MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 25281
Description: Lemma for pntibnd 25282. Package up pntibndlem2 25280 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem3.5 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑖,𝑎,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑣,𝑥,𝑧   𝑢,𝐴,𝑣,𝑥   𝑢,𝐶,𝑣,𝑥,𝑦   𝑅,𝑖,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝐾   𝑘,𝑍,𝑚,𝑢,𝑣,𝑥,𝑦   𝜑,𝑘,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑣,𝑖,𝑚,𝑎)   𝐴(𝑦,𝑧,𝑖,𝑘,𝑚,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑚,𝑎)   𝐶(𝑧,𝑖,𝑘,𝑚,𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐿(𝑦,𝑖,𝑘,𝑚,𝑎)   𝑍(𝑧,𝑖,𝑎)

Proof of Theorem pntibndlem3
Dummy variables 𝑛 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11090 . . 3 2 ∈ ℝ
2 1le2 11241 . . 3 1 ≤ 2
3 chpdifbnd 25244 . . 3 ((2 ∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
41, 2, 3mp2an 708 . 2 𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))
5 simpr 477 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
6 ioossre 12235 . . . . . . . . . . . . 13 (0(,)1) ⊆ ℝ
7 pntibndlem3.4 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (0(,)1))
86, 7sseldi 3601 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
9 eliooord 12233 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
1110simpld 475 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
128, 11elrpd 11869 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
1312adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ+)
14 4nn 11187 . . . . . . . . . . 11 4 ∈ ℕ
15 nnrp 11842 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
17 rpdivcl 11856 . . . . . . . . . 10 ((𝐸 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
1813, 16, 17sylancl 694 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
195, 18rpdivcld 11889 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ+)
2019rpred 11872 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ)
2120rpefcld 14835 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ+)
22 pntibndlem3.6 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2322adantr 481 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ+)
2421, 23rpaddcld 11887 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
2524adantrr 753 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
26 elioore 12205 . . . . . . . . . 10 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ)
2726ad2antll 765 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ)
2823rpred 11872 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ)
2928adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ)
3020reefcld 14818 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ)
3130, 28readdcld 10069 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
3231adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
3328, 21ltaddrp2d 11906 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
3433adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
35 eliooord 12233 . . . . . . . . . . . 12 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦𝑦 < +∞))
3635simpld 475 . . . . . . . . . . 11 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
3736ad2antll 765 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
3829, 32, 27, 34, 37lttrd 10198 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦)
3929rexrd 10089 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ*)
40 elioopnf 12267 . . . . . . . . . 10 (𝑍 ∈ ℝ* → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
4139, 40syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
4227, 38, 41mpbir2and 957 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
4342adantlrr 757 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
44 pntibndlem3.c . . . . . . . . . . . . . . . . 17 𝐶 = ((2 · 𝐵) + (log‘2))
45 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ+)
4645adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ+)
4746rpred 11872 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ)
48 remulcl 10021 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
491, 47, 48sylancr 695 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ)
50 2rp 11837 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
51 relogcl 24322 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℝ
53 readdcl 10019 . . . . . . . . . . . . . . . . . 18 (((2 · 𝐵) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
5449, 52, 53sylancl 694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
5544, 54syl5eqel 2705 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → 𝐶 ∈ ℝ)
5655, 13rerpdivcld 11903 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ)
5756reefcld 14818 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
58 elicopnf 12269 . . . . . . . . . . . . . 14 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
5957, 58syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6059simprbda 653 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ)
6160rehalfcld 11279 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ)
62 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
6313rphalfcld 11884 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 2) ∈ ℝ+)
6447, 63rerpdivcld 11903 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ)
6564reefcld 14818 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
66 remulcl 10021 . . . . . . . . . . . . . . . 16 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6765, 1, 66sylancl 694 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6867adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6957adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
7064recnd 10068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ)
7152recni 10052 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℂ
72 efadd 14824 . . . . . . . . . . . . . . . . . 18 (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
7370, 71, 72sylancl 694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
74 reeflog 24327 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7550, 74ax-mp 5 . . . . . . . . . . . . . . . . . 18 (exp‘(log‘2)) = 2
7675oveq2i 6661 . . . . . . . . . . . . . . . . 17 ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2)
7773, 76syl6eq 2672 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2))
7852a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℝ)
79 rerpdivcl 11861 . . . . . . . . . . . . . . . . . . . 20 (((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8052, 13, 79sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8171div1i 10753 . . . . . . . . . . . . . . . . . . . 20 ((log‘2) / 1) = (log‘2)
8210simprd 479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 < 1)
8382adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → 𝐸 < 1)
848adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ)
85 1re 10039 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
86 ltle 10126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 → 𝐸 ≤ 1))
8784, 85, 86sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1))
8883, 87mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ≤ 1)
8913rpregt0d 11878 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
90 1rp 11836 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
91 rpregt0 11846 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
9290, 91mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1))
93 1lt2 11194 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
94 rplogcl 24350 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
951, 93, 94mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘2) ∈ ℝ+
96 rpregt0 11846 . . . . . . . . . . . . . . . . . . . . . . 23 ((log‘2) ∈ ℝ+ → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
98 lediv2 10913 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
9989, 92, 97, 98syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10088, 99mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 1) ≤ ((log‘2) / 𝐸))
10181, 100syl5eqbrr 4689 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ≤ ((log‘2) / 𝐸))
10278, 80, 64, 101leadd2dd 10642 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
10344oveq1i 6660 . . . . . . . . . . . . . . . . . . . 20 (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸)
10449recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℂ)
10571a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℂ)
106 rpcnne0 11850 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 ∈ ℝ+ → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
10713, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divdir 10710 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝐵) ∈ ℂ ∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
109104, 105, 107, 108syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
110103, 109syl5eq 2668 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
1111recni 10052 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
11247recnd 10068 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℂ)
113 mulcom 10022 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 · 2))
114111, 112, 113sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) = (𝐵 · 2))
115114oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸))
116 rpcnne0 11850 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
11750, 116mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
118 divdiv2 10737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
119112, 107, 117, 118syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
120115, 119eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2)))
121120oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
122110, 121eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
123102, 122breqtrrd 4681 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸))
124 readdcl 10019 . . . . . . . . . . . . . . . . . . 19 (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
12564, 52, 124sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
126 efle 14848 . . . . . . . . . . . . . . . . . 18 ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧ (𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
127125, 56, 126syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
128123, 127mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸)))
12977, 128eqbrtrrd 4677 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
130129adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
13159simplbda 654 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘)
13268, 69, 60, 130, 131letrd 10194 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘)
13365adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
134 rpregt0 11846 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (2 ∈ ℝ ∧ 0 < 2))
13550, 134mp1i 13 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ ∧ 0 < 2))
136 lemuldiv 10903 . . . . . . . . . . . . . 14 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
137133, 60, 135, 136syl3anc 1326 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
138132, 137mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))
13962, 138syl5eqbr 4688 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2))
14062, 133syl5eqel 2705 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ)
141 elicopnf 12269 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
142140, 141syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
14361, 139, 142mpbir2and 957 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞))
144143adantrr 753 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
145144adantlrr 757 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
146 pntibndlem3.5 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
147146ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
148 oveq1 6657 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣))
149148breq2d 4665 . . . . . . . . . . . . 13 (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))
150149anbi2d 740 . . . . . . . . . . . 12 (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣))))
151150anbi1d 741 . . . . . . . . . . 11 (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
152151rexbidv 3052 . . . . . . . . . 10 (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
153152ralbidv 2986 . . . . . . . . 9 (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
154153rspcv 3305 . . . . . . . 8 ((𝑘 / 2) ∈ (𝐾[,)+∞) → (∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
155145, 147, 154sylc 65 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
156 breq2 4657 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑣 < 𝑖𝑣 < 𝑛))
157 breq1 4656 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))
158156, 157anbi12d 747 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣))))
159 fveq2 6191 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
160 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑛𝑖 = 𝑛)
161159, 160oveq12d 6668 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑅𝑖) / 𝑖) = ((𝑅𝑛) / 𝑛))
162161fveq2d 6195 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (abs‘((𝑅𝑖) / 𝑖)) = (abs‘((𝑅𝑛) / 𝑛)))
163162breq1d 4663 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
164158, 163anbi12d 747 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
165164cbvrexv 3172 . . . . . . . . 9 (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
166 breq1 4656 . . . . . . . . . . . 12 (𝑣 = 𝑦 → (𝑣 < 𝑛𝑦 < 𝑛))
167 oveq2 6658 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦))
168167breq2d 4665 . . . . . . . . . . . 12 (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))
169166, 168anbi12d 747 . . . . . . . . . . 11 (𝑣 = 𝑦 → ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦))))
170169anbi1d 741 . . . . . . . . . 10 (𝑣 = 𝑦 → (((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
171170rexbidv 3052 . . . . . . . . 9 (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
172165, 171syl5bb 272 . . . . . . . 8 (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
173172rspcv 3305 . . . . . . 7 (𝑦 ∈ (𝑍(,)+∞) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
17443, 155, 173sylc 65 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
175 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
176 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
177176ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈ ℝ+)
178 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
179 pntibndlem3.2 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
180 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑅𝑥) = (𝑅𝑣))
181 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑣𝑥 = 𝑣)
182180, 181oveq12d 6668 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑣) / 𝑣))
183182fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑣) / 𝑣)))
184183breq1d 4663 . . . . . . . . . . 11 (𝑥 = 𝑣 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴))
185184cbvralv 3171 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
186179, 185sylib 208 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
187186ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
18845ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈ ℝ+)
1897ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1))
19022ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈ ℝ+)
191 simprrl 804 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ)
192 simplrl 800 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+)
193 simplrr 801 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
194 eqid 2622 . . . . . . . 8 ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)
195 simprll 802 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
196 simprlr 803 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
197 simprrr 805 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
198175, 177, 178, 187, 188, 62, 44, 189, 190, 191, 192, 193, 194, 195, 196, 197pntibndlem2 25280 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
199198anassrs 680 . . . . . 6 ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
200174, 199rexlimddv 3035 . . . . 5 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
201200ralrimivva 2971 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
202 oveq1 6657 . . . . . . 7 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
203202raleqdv 3144 . . . . . 6 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
204203ralbidv 2986 . . . . 5 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
205204rspcev 3309 . . . 4 ((((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
20625, 201, 205syl2anc 693 . . 3 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
207206rexlimdvaa 3032 . 2 (𝜑 → (∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2084, 207mpi 20 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  +crp 11832  (,)cioo 12175  [,)cico 12177  [,]cicc 12178  abscabs 13974  expce 14792  logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827
This theorem is referenced by:  pntibnd  25282
  Copyright terms: Public domain W3C validator