MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksubclwwlks Structured version   Visualization version   GIF version

Theorem wwlksubclwwlks 26925
Description: Any prefix of a word representing a closed walk represents a walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
wwlksubclwwlks ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))

Proof of Theorem wwlksubclwwlks
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2622 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 26887 . . . . 5 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)))
4 swrdcl 13419 . . . . . . . . . 10 (𝑋 ∈ Word (Vtx‘𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
54adantr 481 . . . . . . . . 9 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
65ad2antrr 762 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
7 nnz 11399 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
8 eluzp1m1 11711 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
98ex 450 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
107, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
11 peano2zm 11420 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
127, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
13 nnre 11027 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413lem1d 10957 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ≤ 𝑀)
15 eluzuzle 11696 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1612, 14, 15syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1710, 16syld 47 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1817imp 445 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
19 fzoss2 12496 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2018, 19syl 17 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2120adantl 482 . . . . . . . . . . . . 13 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
22 ssralv 3666 . . . . . . . . . . . . 13 ((0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpll 790 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑋 ∈ Word (Vtx‘𝐺))
2524adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑋 ∈ Word (Vtx‘𝐺))
26 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
2713adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ∈ ℝ)
28 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2913, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℝ)
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ∈ ℝ)
31 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3231ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑁 ∈ ℝ)
3313lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 + 1))
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑀 + 1))
35 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 1) ≤ 𝑁)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ≤ 𝑁)
3727, 30, 32, 34, 36letrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀𝑁)
38 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3938ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
40 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
42 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
4313adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
4431adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4542, 43, 443jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4645adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4738nn0ge0d 11354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ≤ 𝑀)
4948anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑀𝑁))
50 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
5146, 49, 50sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
5241, 51jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
53 elnn0z 11390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5452, 53sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
5554adantlrr 757 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
56 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀𝑁)
5739, 55, 563jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5837, 57mpdan 702 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5958expcom 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
60593adant1 1079 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6126, 60sylbi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6261impcom 446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
63 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
6462, 63sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (0...𝑁))
6564adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...𝑁))
66 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑋) = 𝑁 → (0...(#‘𝑋)) = (0...𝑁))
6766eleq2d 2687 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑋) = 𝑁 → (𝑀 ∈ (0...(#‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6867adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) → (𝑀 ∈ (0...(#‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6968adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑀 ∈ (0...(#‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
7065, 69mpbird 247 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...(#‘𝑋)))
7170adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑀 ∈ (0...(#‘𝑋)))
72 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
7312, 7, 14, 72syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
74 fzoss2 12496 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7675sseld 3602 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7776ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7877imp 445 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
79 swrd0fv 13439 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(#‘𝑋)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8025, 71, 78, 79syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8180eqcomd 2628 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋𝑖) = ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖))
82 fzonn0p1p1 12546 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)))
83 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
84 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
8685oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (0..^((𝑀 − 1) + 1)) = (0..^𝑀))
8786eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → ((𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)) ↔ (𝑖 + 1) ∈ (0..^𝑀)))
8882, 87syl5ib 234 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8988ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
9089imp 445 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑖 + 1) ∈ (0..^𝑀))
91 swrd0fv 13439 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(#‘𝑋)) ∧ (𝑖 + 1) ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9225, 71, 90, 91syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9392eqcomd 2628 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋‘(𝑖 + 1)) = ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)))
9481, 93preq12d 4276 . . . . . . . . . . . . . 14 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → {(𝑋𝑖), (𝑋‘(𝑖 + 1))} = {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))})
9594eleq1d 2686 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ({(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9695ralbidva 2985 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9723, 96sylibd 229 . . . . . . . . . . 11 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9897impancom 456 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9998imp 445 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10024, 70jca 554 . . . . . . . . . . . . . 14 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(#‘𝑋))))
101100adantlr 751 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(#‘𝑋))))
102 swrd0len 13422 . . . . . . . . . . . . 13 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(#‘𝑋))) → (#‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
103101, 102syl 17 . . . . . . . . . . . 12 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (#‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
104103oveq1d 6665 . . . . . . . . . . 11 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1) = (𝑀 − 1))
105104oveq2d 6666 . . . . . . . . . 10 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)) = (0..^(𝑀 − 1)))
106105raleqdv 3144 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10799, 106mpbird 247 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10824, 70, 102syl2anc 693 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (#‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
10985eqcomd 2628 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 = ((𝑀 − 1) + 1))
110109ad2antrl 764 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 = ((𝑀 − 1) + 1))
111108, 110eqtrd 2656 . . . . . . . . 9 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
112111adantlr 751 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
1136, 107, 1123jca 1242 . . . . . . 7 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
114113ex 450 . . . . . 6 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1151143adant3 1081 . . . . 5 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1163, 115syl 17 . . . 4 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
117116impcom 446 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
118 nnm1nn0 11334 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
119118ad2antrr 762 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑀 − 1) ∈ ℕ0)
1201, 2iswwlksnx 26731 . . . 4 ((𝑀 − 1) ∈ ℕ0 → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
121119, 120syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
122117, 121mpbird 247 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺))
123122ex 450 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  {cpr 4179  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk2lem2f  27236
  Copyright terms: Public domain W3C validator