Proof of Theorem stoweidlem13
| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem13.3 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 2 | | stoweidlem13.2 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 3 | 1, 2 | resubcld 10458 |
. . 3
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
| 4 | | 2re 11090 |
. . . 4
⊢ 2 ∈
ℝ |
| 5 | | stoweidlem13.1 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 6 | 5 | rpred 11872 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 7 | | remulcl 10021 |
. . . 4
⊢ ((2
∈ ℝ ∧ 𝐸
∈ ℝ) → (2 · 𝐸) ∈ ℝ) |
| 8 | 4, 6, 7 | sylancr 695 |
. . 3
⊢ (𝜑 → (2 · 𝐸) ∈
ℝ) |
| 9 | 1 | recnd 10068 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 10 | 2 | recnd 10068 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 11 | 9, 10 | negsubdi2d 10408 |
. . . 4
⊢ (𝜑 → -(𝑌 − 𝑋) = (𝑋 − 𝑌)) |
| 12 | 2, 1 | resubcld 10458 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑌) ∈ ℝ) |
| 13 | | 1red 10055 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 14 | 13, 6 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → (1 · 𝐸) ∈
ℝ) |
| 15 | | stoweidlem13.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑗 ∈ ℝ) |
| 16 | | 3re 11094 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ |
| 17 | | 3ne0 11115 |
. . . . . . . . . . . . 13
⊢ 3 ≠
0 |
| 18 | 16, 17 | rereccli 10790 |
. . . . . . . . . . . 12
⊢ (1 / 3)
∈ ℝ |
| 19 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 3) ∈
ℝ) |
| 20 | 15, 19 | resubcld 10458 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 − (1 / 3)) ∈
ℝ) |
| 21 | 20, 6 | remulcld 10070 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ) |
| 22 | 21, 1 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ) |
| 23 | | 4re 11097 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
| 24 | 23, 16, 17 | 3pm3.2i 1239 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) |
| 25 | | redivcl 10744 |
. . . . . . . . . . . 12
⊢ ((4
∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈
ℝ) |
| 26 | 24, 25 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → (4 / 3) ∈
ℝ) |
| 27 | 15, 26 | resubcld 10458 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 − (4 / 3)) ∈
ℝ) |
| 28 | 27, 6 | remulcld 10070 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ) |
| 29 | 21, 28 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ) |
| 30 | | stoweidlem13.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸)) |
| 31 | 2, 21, 1, 30 | lesub1dd 10643 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 − 𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌)) |
| 32 | | stoweidlem13.7 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌) |
| 33 | 28, 1, 21, 32 | ltsub2dd 10640 |
. . . . . . . 8
⊢ (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸))) |
| 34 | 12, 22, 29, 31, 33 | lelttrd 10195 |
. . . . . . 7
⊢ (𝜑 → (𝑋 − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸))) |
| 35 | 15 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑗 ∈ ℂ) |
| 36 | 19 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 3) ∈
ℂ) |
| 37 | 35, 36 | subcld 10392 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 − (1 / 3)) ∈
ℂ) |
| 38 | 26 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (4 / 3) ∈
ℂ) |
| 39 | 35, 38 | subcld 10392 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 − (4 / 3)) ∈
ℂ) |
| 40 | 6 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 41 | 37, 39, 40 | subdird 10487 |
. . . . . . . 8
⊢ (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸))) |
| 42 | 35, 36, 35, 38 | sub4d 10441 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗 − 𝑗) − ((1 / 3) − (4 /
3)))) |
| 43 | 35, 35 | subcld 10392 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 − 𝑗) ∈ ℂ) |
| 44 | 43, 36, 38 | subsub2d 10421 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 − 𝑗) − ((1 / 3) − (4 / 3))) =
((𝑗 − 𝑗) + ((4 / 3) − (1 /
3)))) |
| 45 | 42, 44 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗 − 𝑗) + ((4 / 3) − (1 /
3)))) |
| 46 | 45 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) · 𝐸)) |
| 47 | 41, 46 | eqtr3d 2658 |
. . . . . . 7
⊢ (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) · 𝐸)) |
| 48 | 34, 47 | breqtrd 4679 |
. . . . . 6
⊢ (𝜑 → (𝑋 − 𝑌) < (((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) · 𝐸)) |
| 49 | 35 | subidd 10380 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 − 𝑗) = 0) |
| 50 | 49 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 /
3) − (1 / 3)))) |
| 51 | | 4cn 11098 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℂ |
| 52 | | 3cn 11095 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℂ |
| 53 | 51, 52, 17 | divcli 10767 |
. . . . . . . . . . 11
⊢ (4 / 3)
∈ ℂ |
| 54 | | ax-1cn 9994 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 55 | 54, 52, 17 | divcli 10767 |
. . . . . . . . . . 11
⊢ (1 / 3)
∈ ℂ |
| 56 | | 1div1e1 10717 |
. . . . . . . . . . . . . 14
⊢ (1 / 1) =
1 |
| 57 | 56 | oveq2i 6661 |
. . . . . . . . . . . . 13
⊢ ((1 / 3)
+ (1 / 1)) = ((1 / 3) + 1) |
| 58 | | ax-1ne0 10005 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
0 |
| 59 | 54, 52, 54, 54, 17, 58 | divadddivi 10787 |
. . . . . . . . . . . . 13
⊢ ((1 / 3)
+ (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 ·
1)) |
| 60 | 57, 59 | eqtr3i 2646 |
. . . . . . . . . . . 12
⊢ ((1 / 3)
+ 1) = (((1 · 1) + (1 · 3)) / (3 · 1)) |
| 61 | 52, 54 | addcomi 10227 |
. . . . . . . . . . . . . 14
⊢ (3 + 1) =
(1 + 3) |
| 62 | | df-4 11081 |
. . . . . . . . . . . . . 14
⊢ 4 = (3 +
1) |
| 63 | | 1t1e1 11175 |
. . . . . . . . . . . . . . 15
⊢ (1
· 1) = 1 |
| 64 | 52 | mulid2i 10043 |
. . . . . . . . . . . . . . 15
⊢ (1
· 3) = 3 |
| 65 | 63, 64 | oveq12i 6662 |
. . . . . . . . . . . . . 14
⊢ ((1
· 1) + (1 · 3)) = (1 + 3) |
| 66 | 61, 62, 65 | 3eqtr4ri 2655 |
. . . . . . . . . . . . 13
⊢ ((1
· 1) + (1 · 3)) = 4 |
| 67 | 66 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (((1
· 1) + (1 · 3)) / (3 · 1)) = (4 / (3 ·
1)) |
| 68 | | 3t1e3 11178 |
. . . . . . . . . . . . 13
⊢ (3
· 1) = 3 |
| 69 | 68 | oveq2i 6661 |
. . . . . . . . . . . 12
⊢ (4 / (3
· 1)) = (4 / 3) |
| 70 | 60, 67, 69 | 3eqtri 2648 |
. . . . . . . . . . 11
⊢ ((1 / 3)
+ 1) = (4 / 3) |
| 71 | 53, 55, 54, 70 | subaddrii 10370 |
. . . . . . . . . 10
⊢ ((4 / 3)
− (1 / 3)) = 1 |
| 72 | 71 | oveq2i 6661 |
. . . . . . . . 9
⊢ (0 + ((4
/ 3) − (1 / 3))) = (0 + 1) |
| 73 | | 1e0p1 11552 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
| 74 | 72, 73 | eqtr4i 2647 |
. . . . . . . 8
⊢ (0 + ((4
/ 3) − (1 / 3))) = 1 |
| 75 | 50, 74 | syl6eq 2672 |
. . . . . . 7
⊢ (𝜑 → ((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) =
1) |
| 76 | 75 | oveq1d 6665 |
. . . . . 6
⊢ (𝜑 → (((𝑗 − 𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸)) |
| 77 | 48, 76 | breqtrd 4679 |
. . . . 5
⊢ (𝜑 → (𝑋 − 𝑌) < (1 · 𝐸)) |
| 78 | | 1lt2 11194 |
. . . . . 6
⊢ 1 <
2 |
| 79 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
| 80 | 13, 79, 5 | ltmul1d 11913 |
. . . . . 6
⊢ (𝜑 → (1 < 2 ↔ (1
· 𝐸) < (2
· 𝐸))) |
| 81 | 78, 80 | mpbii 223 |
. . . . 5
⊢ (𝜑 → (1 · 𝐸) < (2 · 𝐸)) |
| 82 | 12, 14, 8, 77, 81 | lttrd 10198 |
. . . 4
⊢ (𝜑 → (𝑋 − 𝑌) < (2 · 𝐸)) |
| 83 | 11, 82 | eqbrtrd 4675 |
. . 3
⊢ (𝜑 → -(𝑌 − 𝑋) < (2 · 𝐸)) |
| 84 | 3, 8, 83 | ltnegcon1d 10607 |
. 2
⊢ (𝜑 → -(2 · 𝐸) < (𝑌 − 𝑋)) |
| 85 | | 5re 11099 |
. . . . . 6
⊢ 5 ∈
ℝ |
| 86 | 85 | a1i 11 |
. . . . 5
⊢ (𝜑 → 5 ∈
ℝ) |
| 87 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ∈
ℝ) |
| 88 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ≠ 0) |
| 89 | 86, 87, 88 | redivcld 10853 |
. . . 4
⊢ (𝜑 → (5 / 3) ∈
ℝ) |
| 90 | 89, 6 | remulcld 10070 |
. . 3
⊢ (𝜑 → ((5 / 3) · 𝐸) ∈
ℝ) |
| 91 | 2 | renegcld 10457 |
. . . . 5
⊢ (𝜑 → -𝑋 ∈ ℝ) |
| 92 | 15, 19 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ) |
| 93 | 92, 6 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ) |
| 94 | 28 | renegcld 10457 |
. . . . 5
⊢ (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ) |
| 95 | | stoweidlem13.8 |
. . . . 5
⊢ (𝜑 → 𝑌 < ((𝑗 + (1 / 3)) · 𝐸)) |
| 96 | | stoweidlem13.5 |
. . . . . 6
⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋) |
| 97 | 28, 2 | ltnegd 10605 |
. . . . . 6
⊢ (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))) |
| 98 | 96, 97 | mpbid 222 |
. . . . 5
⊢ (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)) |
| 99 | 1, 91, 93, 94, 95, 98 | lt2addd 10650 |
. . . 4
⊢ (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸))) |
| 100 | 9, 10 | negsubd 10398 |
. . . 4
⊢ (𝜑 → (𝑌 + -𝑋) = (𝑌 − 𝑋)) |
| 101 | 35, 36, 40 | adddird 10065 |
. . . . . 6
⊢ (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸))) |
| 102 | 35, 38 | negsubd 10398 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3))) |
| 103 | 102 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3))) |
| 104 | 103 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸)) |
| 105 | 38 | negcld 10379 |
. . . . . . . . . 10
⊢ (𝜑 → -(4 / 3) ∈
ℂ) |
| 106 | 35, 105, 40 | adddird 10065 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸))) |
| 107 | 38, 40 | mulneg1d 10483 |
. . . . . . . . . 10
⊢ (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸)) |
| 108 | 107 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸))) |
| 109 | 104, 106,
108 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸))) |
| 110 | 109 | negeqd 10275 |
. . . . . . 7
⊢ (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸))) |
| 111 | 35, 40 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 · 𝐸) ∈ ℂ) |
| 112 | 38, 40 | mulcld 10060 |
. . . . . . . . 9
⊢ (𝜑 → ((4 / 3) · 𝐸) ∈
ℂ) |
| 113 | 112 | negcld 10379 |
. . . . . . . 8
⊢ (𝜑 → -((4 / 3) · 𝐸) ∈
ℂ) |
| 114 | 111, 113 | negdid 10405 |
. . . . . . 7
⊢ (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸))) |
| 115 | 112 | negnegd 10383 |
. . . . . . . 8
⊢ (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸)) |
| 116 | 115 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) |
| 117 | 110, 114,
116 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) |
| 118 | 101, 117 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))) |
| 119 | 36, 40 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → ((1 / 3) · 𝐸) ∈
ℂ) |
| 120 | 111 | negcld 10379 |
. . . . . . . 8
⊢ (𝜑 → -(𝑗 · 𝐸) ∈ ℂ) |
| 121 | 111, 119,
120, 112 | add4d 10264 |
. . . . . . 7
⊢ (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))) |
| 122 | 111 | negidd 10382 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0) |
| 123 | 122 | oveq1d 6665 |
. . . . . . 7
⊢ (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))) |
| 124 | 119, 112 | addcld 10059 |
. . . . . . . 8
⊢ (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈
ℂ) |
| 125 | 124 | addid2d 10237 |
. . . . . . 7
⊢ (𝜑 → (0 + (((1 / 3) ·
𝐸) + ((4 / 3) ·
𝐸))) = (((1 / 3) ·
𝐸) + ((4 / 3) ·
𝐸))) |
| 126 | 121, 123,
125 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) |
| 127 | 36, 38, 40 | adddird 10065 |
. . . . . 6
⊢ (𝜑 → (((1 / 3) + (4 / 3))
· 𝐸) = (((1 / 3)
· 𝐸) + ((4 / 3)
· 𝐸))) |
| 128 | 87 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → 3 ∈
ℂ) |
| 129 | 36, 38 | addcld 10059 |
. . . . . . . 8
⊢ (𝜑 → ((1 / 3) + (4 / 3)) ∈
ℂ) |
| 130 | 128, 36, 38 | adddid 10064 |
. . . . . . . . 9
⊢ (𝜑 → (3 · ((1 / 3) + (4
/ 3))) = ((3 · (1 / 3)) + (3 · (4 / 3)))) |
| 131 | 54, 51 | addcomi 10227 |
. . . . . . . . . 10
⊢ (1 + 4) =
(4 + 1) |
| 132 | 54, 52, 17 | divcan2i 10768 |
. . . . . . . . . . 11
⊢ (3
· (1 / 3)) = 1 |
| 133 | 51, 52, 17 | divcan2i 10768 |
. . . . . . . . . . 11
⊢ (3
· (4 / 3)) = 4 |
| 134 | 132, 133 | oveq12i 6662 |
. . . . . . . . . 10
⊢ ((3
· (1 / 3)) + (3 · (4 / 3))) = (1 + 4) |
| 135 | | df-5 11082 |
. . . . . . . . . 10
⊢ 5 = (4 +
1) |
| 136 | 131, 134,
135 | 3eqtr4i 2654 |
. . . . . . . . 9
⊢ ((3
· (1 / 3)) + (3 · (4 / 3))) = 5 |
| 137 | 130, 136 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝜑 → (3 · ((1 / 3) + (4
/ 3))) = 5) |
| 138 | 128, 129,
88, 137 | mvllmuld 10857 |
. . . . . . 7
⊢ (𝜑 → ((1 / 3) + (4 / 3)) = (5 /
3)) |
| 139 | 138 | oveq1d 6665 |
. . . . . 6
⊢ (𝜑 → (((1 / 3) + (4 / 3))
· 𝐸) = ((5 / 3)
· 𝐸)) |
| 140 | 126, 127,
139 | 3eqtr2d 2662 |
. . . . 5
⊢ (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸)) |
| 141 | 118, 140 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸)) |
| 142 | 99, 100, 141 | 3brtr3d 4684 |
. . 3
⊢ (𝜑 → (𝑌 − 𝑋) < ((5 / 3) · 𝐸)) |
| 143 | | 5lt6 11204 |
. . . . . . 7
⊢ 5 <
6 |
| 144 | | 3t2e6 11179 |
. . . . . . 7
⊢ (3
· 2) = 6 |
| 145 | 143, 144 | breqtrri 4680 |
. . . . . 6
⊢ 5 < (3
· 2) |
| 146 | | 3pos 11114 |
. . . . . . . 8
⊢ 0 <
3 |
| 147 | 16, 146 | pm3.2i 471 |
. . . . . . 7
⊢ (3 ∈
ℝ ∧ 0 < 3) |
| 148 | | ltdivmul 10898 |
. . . . . . 7
⊢ ((5
∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3))
→ ((5 / 3) < 2 ↔ 5 < (3 · 2))) |
| 149 | 85, 4, 147, 148 | mp3an 1424 |
. . . . . 6
⊢ ((5 / 3)
< 2 ↔ 5 < (3 · 2)) |
| 150 | 145, 149 | mpbir 221 |
. . . . 5
⊢ (5 / 3)
< 2 |
| 151 | 150 | a1i 11 |
. . . 4
⊢ (𝜑 → (5 / 3) <
2) |
| 152 | 89, 79, 5, 151 | ltmul1dd 11927 |
. . 3
⊢ (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸)) |
| 153 | 3, 90, 8, 142, 152 | lttrd 10198 |
. 2
⊢ (𝜑 → (𝑌 − 𝑋) < (2 · 𝐸)) |
| 154 | 3, 8 | absltd 14168 |
. 2
⊢ (𝜑 → ((abs‘(𝑌 − 𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌 − 𝑋) ∧ (𝑌 − 𝑋) < (2 · 𝐸)))) |
| 155 | 84, 153, 154 | mpbir2and 957 |
1
⊢ (𝜑 → (abs‘(𝑌 − 𝑋)) < (2 · 𝐸)) |