MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tangtx Structured version   Visualization version   GIF version

Theorem tangtx 24257
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 12205 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℝ)
21recoscld 14874 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ∈ ℝ)
31, 2remulcld 10070 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) ∈ ℝ)
4 1re 10039 . . . . . . 7 1 ∈ ℝ
5 rehalfcl 11258 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
61, 5syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℝ)
76resqcld 13035 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℝ)
8 3nn 11186 . . . . . . . 8 3 ∈ ℕ
9 nndivre 11056 . . . . . . . 8 ((((𝐴 / 2)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
107, 8, 9sylancl 694 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
11 resubcl 10345 . . . . . . 7 ((1 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
124, 10, 11sylancr 695 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
131, 12remulcld 10070 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
14 2re 11090 . . . . . . 7 2 ∈ ℝ
15 remulcl 10021 . . . . . . 7 ((2 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
1614, 10, 15sylancr 695 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
17 resubcl 10345 . . . . . 6 ((1 ∈ ℝ ∧ (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
184, 16, 17sylancr 695 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
1913, 18remulcld 10070 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
201resincld 14873 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) ∈ ℝ)
2112resqcld 13035 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ)
22 remulcl 10021 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
2314, 21, 22sylancr 695 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
24 resubcl 10345 . . . . . . . 8 (((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2523, 4, 24sylancl 694 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2612, 18remulcld 10070 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
271recnd 10068 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℂ)
28 2cn 11091 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℂ)
30 2ne0 11113 . . . . . . . . . . . 12 2 ≠ 0
3130a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ≠ 0)
3227, 29, 31divcan2d 10803 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · (𝐴 / 2)) = 𝐴)
3332fveq2d 6195 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
346recnd 10068 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℂ)
35 cos2t 14908 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3634, 35syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3733, 36eqtr3d 2658 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
386recoscld 14874 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℝ)
3938resqcld 13035 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) ∈ ℝ)
40 remulcl 10021 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℝ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
4114, 39, 40sylancr 695 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
424a1i 11 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℝ)
4314a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℝ)
44 eliooord 12233 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (0 < 𝐴𝐴 < (π / 2)))
4544simpld 475 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 𝐴)
46 2pos 11112 . . . . . . . . . . . . . . . 16 0 < 2
4746a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 2)
481, 43, 45, 47divgt0d 10959 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 / 2))
49 pire 24210 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
50 rehalfcl 11258 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (π / 2) ∈ ℝ)
5149, 50mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) ∈ ℝ)
5244simprd 479 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (π / 2))
53 pigt2lt4 24208 . . . . . . . . . . . . . . . . . . . . . 22 (2 < π ∧ π < 4)
5453simpri 478 . . . . . . . . . . . . . . . . . . . . 21 π < 4
55 2t2e4 11177 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
5654, 55breqtrri 4680 . . . . . . . . . . . . . . . . . . . 20 π < (2 · 2)
5714, 46pm3.2i 471 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℝ ∧ 0 < 2)
58 ltdivmul 10898 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) < 2 ↔ π < (2 · 2)))
5949, 14, 57, 58mp3an 1424 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) < 2 ↔ π < (2 · 2))
6056, 59mpbir 221 . . . . . . . . . . . . . . . . . . 19 (π / 2) < 2
6160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) < 2)
621, 51, 43, 52, 61lttrd 10198 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < 2)
6328mulid2i 10043 . . . . . . . . . . . . . . . . 17 (1 · 2) = 2
6462, 63syl6breqr 4695 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (1 · 2))
65 ltdivmul2 10900 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
661, 42, 43, 47, 65syl112anc 1330 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
6764, 66mpbird 247 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) < 1)
686, 42, 67ltled 10185 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≤ 1)
69 0xr 10086 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
70 elioc2 12236 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
7169, 4, 70mp2an 708 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
726, 48, 68, 71syl3anbrc 1246 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ (0(,]1))
73 cos01bnd 14916 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ (0(,]1) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7472, 73syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7574simprd 479 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)))
76 cos01gt0 14921 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
7772, 76syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘(𝐴 / 2)))
78 0re 10040 . . . . . . . . . . . . . 14 0 ∈ ℝ
79 ltle 10126 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8078, 38, 79sylancr 695 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8177, 80mpd 15 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
8278a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 ∈ ℝ)
8382, 38, 12, 77, 75lttrd 10198 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (1 − (((𝐴 / 2)↑2) / 3)))
8482, 12, 83ltled 10185 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (1 − (((𝐴 / 2)↑2) / 3)))
8538, 12, 81, 84lt2sqd 13043 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)) ↔ ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
8675, 85mpbid 222 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2))
87 ltmul2 10874 . . . . . . . . . . 11 ((((cos‘(𝐴 / 2))↑2) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8839, 21, 43, 47, 87syl112anc 1330 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8986, 88mpbid 222 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
9041, 23, 42, 89ltsub1dd 10639 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((cos‘(𝐴 / 2))↑2)) − 1) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
9137, 90eqbrtrd 4675 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
92 3re 11094 . . . . . . . . . 10 3 ∈ ℝ
93 remulcl 10021 . . . . . . . . . 10 ((3 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9492, 10, 93sylancr 695 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
95 4re 11097 . . . . . . . . . 10 4 ∈ ℝ
96 remulcl 10021 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9795, 10, 96sylancr 695 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9810resqcld 13035 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ)
99 remulcl 10021 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
10014, 98, 99sylancr 695 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
101 readdcl 10019 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
1024, 100, 101sylancr 695 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
103 3lt4 11197 . . . . . . . . . 10 3 < 4
10492a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℝ)
10595a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 4 ∈ ℝ)
10648gt0ne0d 10592 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≠ 0)
1076, 106sqgt0d 13037 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < ((𝐴 / 2)↑2))
108 3pos 11114 . . . . . . . . . . . . 13 0 < 3
109108a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < 3)
1107, 104, 107, 109divgt0d 10959 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 0 < (((𝐴 / 2)↑2) / 3))
111 ltmul1 10873 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3) ∈ ℝ ∧ 0 < (((𝐴 / 2)↑2) / 3))) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
112104, 105, 10, 110, 111syl112anc 1330 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
113103, 112mpbii 223 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3)))
11494, 97, 102, 113ltsub2dd 10640 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) < ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
115 sq1 12958 . . . . . . . . . . . . . . . 16 (1↑2) = 1
116115a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (1↑2) = 1)
11710recnd 10068 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℂ)
118117mulid2d 10058 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (1 · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑2) / 3))
119118oveq2d 6666 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
120116, 119oveq12d 6668 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) = (1 − (2 · (((𝐴 / 2)↑2) / 3))))
121120oveq1d 6665 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
122 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
123 binom2sub 12981 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
124122, 117, 123sylancr 695 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
12542recnd 10068 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℂ)
12698recnd 10068 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ)
12716recnd 10068 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
128125, 126, 127addsubd 10413 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
129121, 124, 1283eqtr4d 2666 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))))
130129oveq2d 6666 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))))
131 addcl 10018 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
132122, 126, 131sylancr 695 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
13329, 132, 127subdid 10486 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))))
13429, 125, 126adddid 10064 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
1351222timesi 11147 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
136135oveq1i 6660 . . . . . . . . . . . . . . 15 ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
137100recnd 10068 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
138125, 125, 137addassd 10062 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
139136, 138syl5eq 2668 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
140134, 139eqtrd 2656 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
14155oveq1i 6660 . . . . . . . . . . . . . 14 ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (4 · (((𝐴 / 2)↑2) / 3))
14229, 29, 117mulassd 10063 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (2 · (2 · (((𝐴 / 2)↑2) / 3))))
143141, 142syl5reqr 2671 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (2 · (((𝐴 / 2)↑2) / 3))) = (4 · (((𝐴 / 2)↑2) / 3)))
144140, 143oveq12d 6668 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) − (4 · (((𝐴 / 2)↑2) / 3))))
145 addcl 10018 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
146122, 137, 145sylancr 695 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
14797recnd 10068 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
148125, 146, 147addsubassd 10412 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) − (4 · (((𝐴 / 2)↑2) / 3))) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
149144, 148eqtrd 2656 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
150130, 133, 1493eqtrd 2660 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
151150oveq1d 6665 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) = ((1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))) − 1))
152146, 147subcld 10392 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
153 pncan2 10288 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ) → ((1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
154122, 152, 153sylancr 695 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
155151, 154eqtrd 2656 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
156 subcl 10280 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
157122, 117, 156sylancr 695 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
158157, 125, 127subdid 10486 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))))
159157mulid1d 10057 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · 1) = (1 − (((𝐴 / 2)↑2) / 3)))
160125, 117, 127subdird 10487 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))))
161127mulid2d 10058 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (1 · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
162117, 29, 117mul12d 10245 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
163117sqvald 13005 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) = ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3)))
164163oveq2d 6666 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
165162, 164eqtr4d 2659 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
166161, 165oveq12d 6668 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
167160, 166eqtrd 2656 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
168159, 167oveq12d 6668 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
169125, 117, 127, 137subadd4d 10440 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
170 df-3 11080 . . . . . . . . . . . . . 14 3 = (2 + 1)
17128, 122addcomi 10227 . . . . . . . . . . . . . 14 (2 + 1) = (1 + 2)
172170, 171eqtri 2644 . . . . . . . . . . . . 13 3 = (1 + 2)
173172oveq1i 6660 . . . . . . . . . . . 12 (3 · (((𝐴 / 2)↑2) / 3)) = ((1 + 2) · (((𝐴 / 2)↑2) / 3))
174125, 29, 117adddird 10065 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 2) · (((𝐴 / 2)↑2) / 3)) = ((1 · (((𝐴 / 2)↑2) / 3)) + (2 · (((𝐴 / 2)↑2) / 3))))
175118oveq1d 6665 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (((𝐴 / 2)↑2) / 3)) + (2 · (((𝐴 / 2)↑2) / 3))) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
176174, 175eqtrd 2656 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 2) · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
177173, 176syl5eq 2668 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
178177oveq2d 6666 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
179169, 178eqtr4d 2659 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
180158, 168, 1793eqtrd 2660 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
181114, 155, 1803brtr4d 4685 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
1822, 25, 26, 91, 181lttrd 10198 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
183 ltmul2 10874 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
1842, 26, 1, 45, 183syl112anc 1330 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
185182, 184mpbid 222 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
18618recnd 10068 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
18727, 157, 186mulassd 10063 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
188185, 187breqtrrd 4681 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
18913, 38remulcld 10070 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) ∈ ℝ)
19074simpld 475 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)))
1911, 12, 45, 83mulgt0d 10192 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
192 ltmul2 10874 . . . . . . 7 (((1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ ∧ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
19318, 38, 13, 191, 192syl112anc 1330 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
194190, 193mpbid 222 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))))
19529, 34, 157mulassd 10063 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))))
19632oveq1d 6665 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
19734, 125, 117subdid 10486 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))))
19834mulid1d 10057 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · 1) = (𝐴 / 2))
199170oveq2i 6661 . . . . . . . . . . . . . . . 16 ((𝐴 / 2)↑3) = ((𝐴 / 2)↑(2 + 1))
200 2nn0 11309 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
201 expp1 12867 . . . . . . . . . . . . . . . . 17 (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
20234, 200, 201sylancl 694 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
203199, 202syl5eq 2668 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
2047recnd 10068 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℂ)
205204, 34mulcomd 10061 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) · (𝐴 / 2)) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
206203, 205eqtrd 2656 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
207206oveq1d 6665 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) = (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3))
208 3cn 11095 . . . . . . . . . . . . . . 15 3 ∈ ℂ
209208a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℂ)
210 3ne0 11115 . . . . . . . . . . . . . . 15 3 ≠ 0
211210a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ≠ 0)
21234, 204, 209, 211divassd 10836 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3) = ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)))
213207, 212eqtr2d 2657 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑3) / 3))
214198, 213oveq12d 6668 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
215197, 214eqtrd 2656 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
216215oveq2d 6666 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
217195, 196, 2163eqtr3d 2664 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
218 sin01bnd 14915 . . . . . . . . . . 11 ((𝐴 / 2) ∈ (0(,]1) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
21972, 218syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
220219simpld 475 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)))
221 3nn0 11310 . . . . . . . . . . . . 13 3 ∈ ℕ0
222 reexpcl 12877 . . . . . . . . . . . . 13 (((𝐴 / 2) ∈ ℝ ∧ 3 ∈ ℕ0) → ((𝐴 / 2)↑3) ∈ ℝ)
2236, 221, 222sylancl 694 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) ∈ ℝ)
224 nndivre 11056 . . . . . . . . . . . 12 ((((𝐴 / 2)↑3) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
225223, 8, 224sylancl 694 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
2266, 225resubcld 10458 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ)
2276resincld 14873 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℝ)
228 ltmul2 10874 . . . . . . . . . 10 ((((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
229226, 227, 43, 47, 228syl112anc 1330 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
230220, 229mpbid 222 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2))))
231217, 230eqbrtrd 4675 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))))
232 remulcl 10021 . . . . . . . . 9 ((2 ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
23314, 227, 232sylancr 695 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
234 ltmul1 10873 . . . . . . . 8 (((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (2 · (sin‘(𝐴 / 2))) ∈ ℝ ∧ ((cos‘(𝐴 / 2)) ∈ ℝ ∧ 0 < (cos‘(𝐴 / 2)))) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
23513, 233, 38, 77, 234syl112anc 1330 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
236231, 235mpbid 222 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
237227recnd 10068 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℂ)
23838recnd 10068 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℂ)
23929, 237, 238mulassd 10063 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
240 sin2t 14907 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
24134, 240syl 17 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
24232fveq2d 6195 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
243239, 241, 2423eqtr2rd 2663 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) = ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
244236, 243breqtrrd 4681 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < (sin‘𝐴))
24519, 189, 20, 194, 244lttrd 10198 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < (sin‘𝐴))
2463, 19, 20, 188, 245lttrd 10198 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (sin‘𝐴))
247 sincosq1sgn 24250 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
248247simprd 479 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘𝐴))
249 ltmuldiv 10896 . . . 4 ((𝐴 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ ∧ ((cos‘𝐴) ∈ ℝ ∧ 0 < (cos‘𝐴))) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
2501, 20, 2, 248, 249syl112anc 1330 . . 3 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
251246, 250mpbid 222 . 2 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < ((sin‘𝐴) / (cos‘𝐴)))
252248gt0ne0d 10592 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ≠ 0)
253 tanval 14858 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
25427, 252, 253syl2anc 693 . 2 (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
255251, 254breqtrrd 4681 1 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  0cn0 11292  (,)cioo 12175  (,]cioc 12176  cexp 12860  sincsin 14794  cosccos 14795  tanctan 14796  πcpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  tanabsge  24258  basellem8  24814
  Copyright terms: Public domain W3C validator