![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashssdif | Structured version Visualization version GIF version |
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
hashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘(𝐴 ∖ 𝐵)) = ((#‘𝐴) − (#‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8180 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
2 | diffi 8192 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
3 | disjdif 4040 | . . . . . . . 8 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
4 | hashun 13171 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵)))) | |
5 | 3, 4 | mp3an3 1413 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵)))) |
6 | 1, 2, 5 | syl2an 494 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵)))) |
7 | 6 | anabss1 855 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵)))) |
8 | undif 4049 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
9 | 8 | biimpi 206 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
10 | 9 | fveq2d 6195 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = (#‘𝐴)) |
11 | 10 | eqeq1d 2624 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → ((#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) ↔ (#‘𝐴) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))))) |
12 | 11 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((#‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) ↔ (#‘𝐴) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))))) |
13 | 7, 12 | mpbid 222 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘𝐴) = ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵)))) |
14 | 13 | eqcomd 2628 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) = (#‘𝐴)) |
15 | hashcl 13147 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0) | |
16 | 15 | nn0cnd 11353 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℂ) |
17 | hashcl 13147 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0) | |
18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘𝐵) ∈ ℕ0) |
19 | 18 | nn0cnd 11353 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘𝐵) ∈ ℂ) |
20 | hashcl 13147 | . . . . . . . 8 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (#‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
21 | 2, 20 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (#‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
22 | 21 | nn0cnd 11353 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (#‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
23 | subadd 10284 | . . . . . 6 ⊢ (((#‘𝐴) ∈ ℂ ∧ (#‘𝐵) ∈ ℂ ∧ (#‘(𝐴 ∖ 𝐵)) ∈ ℂ) → (((#‘𝐴) − (#‘𝐵)) = (#‘(𝐴 ∖ 𝐵)) ↔ ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) = (#‘𝐴))) | |
24 | 16, 19, 22, 23 | syl3an 1368 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (((#‘𝐴) − (#‘𝐵)) = (#‘(𝐴 ∖ 𝐵)) ↔ ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) = (#‘𝐴))) |
25 | 24 | 3anidm13 1384 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (((#‘𝐴) − (#‘𝐵)) = (#‘(𝐴 ∖ 𝐵)) ↔ ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) = (#‘𝐴))) |
26 | 25 | anabss5 857 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((#‘𝐴) − (#‘𝐵)) = (#‘(𝐴 ∖ 𝐵)) ↔ ((#‘𝐵) + (#‘(𝐴 ∖ 𝐵))) = (#‘𝐴))) |
27 | 14, 26 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((#‘𝐴) − (#‘𝐵)) = (#‘(𝐴 ∖ 𝐵))) |
28 | 27 | eqcomd 2628 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (#‘(𝐴 ∖ 𝐵)) = ((#‘𝐴) − (#‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ℂcc 9934 + caddc 9939 − cmin 10266 ℕ0cn0 11292 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-hash 13118 |
This theorem is referenced by: hashdif 13201 hashdifsn 13202 hashreshashfun 13226 brfi1indlem 13278 uvtxanm1nbgr 26305 clwwlknclwwlkdifnum 26874 ballotlemfmpn 30556 ballotth 30599 poimirlem26 33435 poimirlem27 33436 |
Copyright terms: Public domain | W3C validator |