Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   Unicode version

Theorem ballotlemfmpn 30556
Description:  ( F `  C ) finishes counting at  ( M  -  N ). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
Assertion
Ref Expression
ballotlemfmpn  |-  ( C  e.  O  ->  (
( F `  C
) `  ( M  +  N ) )  =  ( M  -  N
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i
Allowed substitution hints:    C( x, c)    P( x, i, c)    F( x)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfmpn
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3  |-  M  e.  NN
2 ballotth.n . . 3  |-  N  e.  NN
3 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 id 22 . . 3  |-  ( C  e.  O  ->  C  e.  O )
7 nnaddcl 11042 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
81, 2, 7mp2an 708 . . . . 5  |-  ( M  +  N )  e.  NN
98nnzi 11401 . . . 4  |-  ( M  +  N )  e.  ZZ
109a1i 11 . . 3  |-  ( C  e.  O  ->  ( M  +  N )  e.  ZZ )
111, 2, 3, 4, 5, 6, 10ballotlemfval 30551 . 2  |-  ( C  e.  O  ->  (
( F `  C
) `  ( M  +  N ) )  =  ( ( # `  (
( 1 ... ( M  +  N )
)  i^i  C )
)  -  ( # `  ( ( 1 ... ( M  +  N
) )  \  C
) ) ) )
12 ssrab2 3687 . . . . . . . . 9  |-  { c  e.  ~P ( 1 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  C_ 
~P ( 1 ... ( M  +  N
) )
133, 12eqsstri 3635 . . . . . . . 8  |-  O  C_  ~P ( 1 ... ( M  +  N )
)
1413sseli 3599 . . . . . . 7  |-  ( C  e.  O  ->  C  e.  ~P ( 1 ... ( M  +  N
) ) )
1514elpwid 4170 . . . . . 6  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
16 sseqin2 3817 . . . . . 6  |-  ( C 
C_  ( 1 ... ( M  +  N
) )  <->  ( (
1 ... ( M  +  N ) )  i^i 
C )  =  C )
1715, 16sylib 208 . . . . 5  |-  ( C  e.  O  ->  (
( 1 ... ( M  +  N )
)  i^i  C )  =  C )
1817fveq2d 6195 . . . 4  |-  ( C  e.  O  ->  ( # `
 ( ( 1 ... ( M  +  N ) )  i^i 
C ) )  =  ( # `  C
) )
19 rabssab 3690 . . . . . . 7  |-  { c  e.  ~P ( 1 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  C_ 
{ c  |  (
# `  c )  =  M }
2019sseli 3599 . . . . . 6  |-  ( C  e.  { c  e. 
~P ( 1 ... ( M  +  N
) )  |  (
# `  c )  =  M }  ->  C  e.  { c  |  (
# `  c )  =  M } )
2120, 3eleq2s 2719 . . . . 5  |-  ( C  e.  O  ->  C  e.  { c  |  (
# `  c )  =  M } )
22 fveq2 6191 . . . . . . 7  |-  ( b  =  C  ->  ( # `
 b )  =  ( # `  C
) )
2322eqeq1d 2624 . . . . . 6  |-  ( b  =  C  ->  (
( # `  b )  =  M  <->  ( # `  C
)  =  M ) )
24 fveq2 6191 . . . . . . . 8  |-  ( c  =  b  ->  ( # `
 c )  =  ( # `  b
) )
2524eqeq1d 2624 . . . . . . 7  |-  ( c  =  b  ->  (
( # `  c )  =  M  <->  ( # `  b
)  =  M ) )
2625cbvabv 2747 . . . . . 6  |-  { c  |  ( # `  c
)  =  M }  =  { b  |  (
# `  b )  =  M }
2723, 26elab2g 3353 . . . . 5  |-  ( C  e.  O  ->  ( C  e.  { c  |  ( # `  c
)  =  M }  <->  (
# `  C )  =  M ) )
2821, 27mpbid 222 . . . 4  |-  ( C  e.  O  ->  ( # `
 C )  =  M )
2918, 28eqtrd 2656 . . 3  |-  ( C  e.  O  ->  ( # `
 ( ( 1 ... ( M  +  N ) )  i^i 
C ) )  =  M )
30 fzfi 12771 . . . . 5  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
31 hashssdif 13200 . . . . 5  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  -> 
( # `  ( ( 1 ... ( M  +  N ) ) 
\  C ) )  =  ( ( # `  ( 1 ... ( M  +  N )
) )  -  ( # `
 C ) ) )
3230, 15, 31sylancr 695 . . . 4  |-  ( C  e.  O  ->  ( # `
 ( ( 1 ... ( M  +  N ) )  \  C ) )  =  ( ( # `  (
1 ... ( M  +  N ) ) )  -  ( # `  C
) ) )
338nnnn0i 11300 . . . . . 6  |-  ( M  +  N )  e. 
NN0
34 hashfz1 13134 . . . . . 6  |-  ( ( M  +  N )  e.  NN0  ->  ( # `  ( 1 ... ( M  +  N )
) )  =  ( M  +  N ) )
3533, 34mp1i 13 . . . . 5  |-  ( C  e.  O  ->  ( # `
 ( 1 ... ( M  +  N
) ) )  =  ( M  +  N
) )
3635, 28oveq12d 6668 . . . 4  |-  ( C  e.  O  ->  (
( # `  ( 1 ... ( M  +  N ) ) )  -  ( # `  C
) )  =  ( ( M  +  N
)  -  M ) )
371nncni 11030 . . . . . 6  |-  M  e.  CC
382nncni 11030 . . . . . 6  |-  N  e.  CC
39 pncan2 10288 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
4037, 38, 39mp2an 708 . . . . 5  |-  ( ( M  +  N )  -  M )  =  N
4140a1i 11 . . . 4  |-  ( C  e.  O  ->  (
( M  +  N
)  -  M )  =  N )
4232, 36, 413eqtrd 2660 . . 3  |-  ( C  e.  O  ->  ( # `
 ( ( 1 ... ( M  +  N ) )  \  C ) )  =  N )
4329, 42oveq12d 6668 . 2  |-  ( C  e.  O  ->  (
( # `  ( ( 1 ... ( M  +  N ) )  i^i  C ) )  -  ( # `  (
( 1 ... ( M  +  N )
)  \  C )
) )  =  ( M  -  N ) )
4411, 43eqtrd 2656 1  |-  ( C  e.  O  ->  (
( F `  C
) `  ( M  +  N ) )  =  ( M  -  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlem5  30561
  Copyright terms: Public domain W3C validator