Proof of Theorem ballotlemsel1i
| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 11408 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℤ) |
| 2 | | ballotth.m |
. . . . . 6
⊢ 𝑀 ∈ ℕ |
| 3 | | ballotth.n |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
| 4 | | ballotth.o |
. . . . . 6
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
| 5 | | ballotth.p |
. . . . . 6
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
| 6 | | ballotth.f |
. . . . . 6
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
| 7 | | ballotth.e |
. . . . . 6
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 8 | | ballotth.mgtn |
. . . . . 6
⊢ 𝑁 < 𝑀 |
| 9 | | ballotth.i |
. . . . . 6
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemiex 30563 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 11 | 10 | simpld 475 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 12 | | elfzelz 12342 |
. . . 4
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
| 14 | 13 | adantr 481 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℤ) |
| 15 | | nnaddcl 11042 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 16 | 2, 3, 15 | mp2an 708 |
. . . . . . . . 9
⊢ (𝑀 + 𝑁) ∈ ℕ |
| 17 | 16 | nnzi 11401 |
. . . . . . . 8
⊢ (𝑀 + 𝑁) ∈ ℤ |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℤ) |
| 19 | | elfzle2 12345 |
. . . . . . . 8
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 20 | 11, 19 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 21 | | eluz2 11693 |
. . . . . . 7
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) ↔ ((𝐼‘𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼‘𝐶) ≤ (𝑀 + 𝑁))) |
| 22 | 13, 18, 20, 21 | syl3anbrc 1246 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
| 23 | | fzss2 12381 |
. . . . . 6
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
| 25 | 24 | sselda 3603 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) |
| 26 | | ballotth.s |
. . . . 5
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 27 | 2, 3, 4, 5, 6, 7, 8, 9, 26 | ballotlemsdom 30573 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
| 28 | 25, 27 | syldan 487 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
| 29 | | elfzelz 12342 |
. . 3
⊢ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
| 30 | 28, 29 | syl 17 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
| 31 | | elfzelz 12342 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
| 32 | 31 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
| 33 | 32 | zred 11482 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℝ) |
| 34 | 14 | zred 11482 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℝ) |
| 35 | | 1red 10055 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℝ) |
| 36 | 34, 35 | readdcld 10069 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐼‘𝐶) + 1) ∈ ℝ) |
| 37 | | elfzle2 12345 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ≤ (𝐼‘𝐶)) |
| 38 | 37 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (𝐼‘𝐶)) |
| 39 | 14 | zcnd 11483 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℂ) |
| 40 | | 1cnd 10056 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℂ) |
| 41 | 39, 40 | pncand 10393 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
| 42 | 38, 41 | breqtrrd 4681 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (((𝐼‘𝐶) + 1) − 1)) |
| 43 | 33, 36, 35, 42 | lesubd 10631 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ≤ (((𝐼‘𝐶) + 1) − 𝐽)) |
| 44 | 2, 3, 4, 5, 6, 7, 8, 9, 26 | ballotlemsv 30571 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 45 | 25, 44 | syldan 487 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 46 | 38 | iftrued 4094 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 47 | 45, 46 | eqtrd 2656 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 48 | 43, 47 | breqtrrd 4681 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ≤ ((𝑆‘𝐶)‘𝐽)) |
| 49 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝐶) ∈ ℤ) |
| 50 | | elfznn 12370 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℕ) |
| 51 | 50 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ ℕ) |
| 52 | 49, 51 | ltesubnnd 29568 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝐶) + 1) − 𝐽) ≤ (𝐼‘𝐶)) |
| 53 | 25, 52 | syldan 487 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐼‘𝐶) + 1) − 𝐽) ≤ (𝐼‘𝐶)) |
| 54 | 47, 53 | eqbrtrd 4675 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
| 55 | | elfz4 12335 |
. 2
⊢ (((1
∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ ∧ ((𝑆‘𝐶)‘𝐽) ∈ ℤ) ∧ (1 ≤ ((𝑆‘𝐶)‘𝐽) ∧ ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
| 56 | 1, 14, 30, 48, 54, 55 | syl32anc 1334 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |