| Step | Hyp | Ref
| Expression |
| 1 | | caurcvgr.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 2 | | caurcvgr.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 3 | | reex 10027 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 4 | 3 | ssex 4802 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
| 6 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
| 7 | | fex2 7121 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) →
𝐹 ∈
V) |
| 8 | 1, 5, 6, 7 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | | limsupcl 14204 |
. . . . . 6
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) ∈
ℝ*) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
| 11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈
ℝ*) |
| 12 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ) |
| 13 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ 𝐴) |
| 14 | 12, 13 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (𝐹‘𝑗) ∈ ℝ) |
| 15 | | caucvgrlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 16 | 15 | rpred 11872 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 17 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈ ℝ) |
| 18 | 14, 17 | readdcld 10069 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
| 19 | | mnfxr 10096 |
. . . . . 6
⊢ -∞
∈ ℝ* |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ ∈
ℝ*) |
| 21 | 14, 17 | resubcld 10458 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
| 22 | 21 | rexrd 10089 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈
ℝ*) |
| 23 | 21 | mnfltd 11958 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < ((𝐹‘𝑗) − 𝑅)) |
| 24 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ) |
| 25 | | ressxr 10083 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
| 26 | | fss 6056 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℝ*) → 𝐹:𝐴⟶ℝ*) |
| 27 | 1, 25, 26 | sylancl 694 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| 28 | 27 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*) |
| 29 | | caurcvgr.3 |
. . . . . . 7
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
| 30 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) =
+∞) |
| 31 | 24, 13 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ ℝ) |
| 32 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
| 33 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑚)) |
| 34 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
| 35 | 34 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) − (𝐹‘𝑗)) = ((𝐹‘𝑚) − (𝐹‘𝑗))) |
| 36 | 35 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑚) − (𝐹‘𝑗)))) |
| 37 | 36 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅 ↔ (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
| 38 | 33, 37 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅))) |
| 39 | 38 | cbvralv 3171 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
| 40 | 32, 39 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
| 41 | 12 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑚) ∈ ℝ) |
| 42 | 14 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ) |
| 43 | 41, 42 | resubcld 10458 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℝ) |
| 44 | 43 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℂ) |
| 45 | 44 | abscld 14175 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
| 46 | 17 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → 𝑅 ∈ ℝ) |
| 47 | | ltle 10126 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
| 48 | 45, 46, 47 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
| 49 | 41, 42, 46 | absdifled 14173 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
| 50 | 48, 49 | sylibd 229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
| 51 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
| 52 | 50, 51 | syl6 35 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
| 53 | 52 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
| 54 | 53 | ralimdva 2962 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
| 55 | 40, 54 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
| 56 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑛 ≤ 𝑚 ↔ 𝑗 ≤ 𝑚)) |
| 57 | 56 | imbi1d 331 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) ↔ (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
| 58 | 57 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
| 59 | 58 | rspcev 3309 |
. . . . . . 7
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
| 60 | 31, 55, 59 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
| 61 | 24, 28, 22, 30, 60 | limsupbnd2 14214 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
| 62 | 20, 22, 11, 23, 61 | xrltletrd 11992 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < (lim
sup‘𝐹)) |
| 63 | 18 | rexrd 10089 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈
ℝ*) |
| 64 | 45 | adantrr 753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
| 65 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℝ) |
| 66 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑚 ∈ 𝐴) |
| 67 | | simplrr 801 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
| 68 | | simprr 796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑗 ≤ 𝑚) |
| 69 | 38 | rspcv 3305 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅))) |
| 70 | 66, 67, 68, 69 | syl3c 66 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) |
| 71 | 64, 65, 70 | ltled 10185 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅) |
| 72 | 41 | adantrr 753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℝ) |
| 73 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ∈ ℝ) |
| 74 | 72, 73, 65 | absdifled 14173 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
| 75 | 71, 74 | mpbid 222 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 76 | 75 | simprd 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) |
| 77 | 76 | expr 643 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 78 | 77 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 79 | 56 | imbi1d 331 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) ↔ (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
| 80 | 79 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → (∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
| 81 | 80 | rspcev 3309 |
. . . . . 6
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 82 | 31, 78, 81 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 83 | 24, 28, 63, 82 | limsupbnd1 14213 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
| 84 | | xrre 12000 |
. . . 4
⊢ ((((lim
sup‘𝐹) ∈
ℝ* ∧ ((𝐹‘𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
| 85 | 11, 18, 62, 83, 84 | syl22anc 1327 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
| 86 | 85 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℝ) |
| 87 | 72, 86 | resubcld 10458 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℝ) |
| 88 | 87 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℂ) |
| 89 | 88 | abscld 14175 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ∈ ℝ) |
| 90 | | 2re 11090 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 91 | | remulcl 10021 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ 𝑅
∈ ℝ) → (2 · 𝑅) ∈ ℝ) |
| 92 | 90, 65, 91 | sylancr 695 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) ∈ ℝ) |
| 93 | | 3re 11094 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
| 94 | | remulcl 10021 |
. . . . . . . 8
⊢ ((3
∈ ℝ ∧ 𝑅
∈ ℝ) → (3 · 𝑅) ∈ ℝ) |
| 95 | 93, 65, 94 | sylancr 695 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (3 · 𝑅) ∈ ℝ) |
| 96 | 72 | recnd 10068 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℂ) |
| 97 | 86 | recnd 10068 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℂ) |
| 98 | 96, 97 | abssubd 14192 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹‘𝑚)))) |
| 99 | 72, 92 | resubcld 10458 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ∈ ℝ) |
| 100 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
| 101 | 65 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℂ) |
| 102 | 101 | 2timesd 11275 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅)) |
| 103 | 102 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
| 104 | 96, 101, 101 | subsub4d 10423 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
| 105 | 103, 104 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = (((𝐹‘𝑚) − 𝑅) − 𝑅)) |
| 106 | 72, 65 | resubcld 10458 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ∈ ℝ) |
| 107 | 72, 65, 73 | lesubaddd 10624 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗) ↔ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
| 108 | 76, 107 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗)) |
| 109 | 106, 73, 65, 108 | lesub1dd 10643 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) ≤ ((𝐹‘𝑗) − 𝑅)) |
| 110 | 105, 109 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ ((𝐹‘𝑗) − 𝑅)) |
| 111 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
| 112 | 99, 100, 86, 110, 111 | letrd 10194 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹)) |
| 113 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
| 114 | 72, 92 | readdcld 10069 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) ∈ ℝ) |
| 115 | 83 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
| 116 | 72, 65 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + 𝑅) ∈ ℝ) |
| 117 | 75, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
| 118 | 73, 65, 72 | lesubaddd 10624 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ↔ (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅))) |
| 119 | 117, 118 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅)) |
| 120 | 73, 116, 65, 119 | leadd1dd 10641 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ (((𝐹‘𝑚) + 𝑅) + 𝑅)) |
| 121 | 96, 101, 101 | addassd 10062 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
| 122 | 102 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
| 123 | 121, 122 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (2 · 𝑅))) |
| 124 | 120, 123 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
| 125 | 86, 113, 114, 115, 124 | letrd 10194 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
| 126 | 86, 72, 92 | absdifled 14173 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))))) |
| 127 | 112, 125,
126 | mpbir2and 957 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅)) |
| 128 | 98, 127 | eqbrtrd 4675 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅)) |
| 129 | | 2lt3 11195 |
. . . . . . . 8
⊢ 2 <
3 |
| 130 | 90 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 2 ∈ ℝ) |
| 131 | 93 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 3 ∈ ℝ) |
| 132 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈
ℝ+) |
| 133 | 132 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈
ℝ+) |
| 134 | 130, 131,
133 | ltmul1d 11913 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅))) |
| 135 | 129, 134 | mpbii 223 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) < (3 · 𝑅)) |
| 136 | 89, 92, 95, 128, 135 | lelttrd 10195 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)) |
| 137 | 136 | expr 643 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
| 138 | 137 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
| 139 | 34 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) − (lim sup‘𝐹)) = ((𝐹‘𝑚) − (lim sup‘𝐹))) |
| 140 | 139 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) = (abs‘((𝐹‘𝑚) − (lim sup‘𝐹)))) |
| 141 | 140 | breq1d 4663 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅) ↔ (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
| 142 | 33, 141 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
| 143 | 142 | cbvralv 3171 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
| 144 | 138, 143 | sylibr 224 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))) |
| 145 | 85, 144 | jca 554 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
| 146 | | caurcvgr.4 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 147 | | breq2 4657 |
. . . . . 6
⊢ (𝑥 = 𝑅 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
| 148 | 147 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑅 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
| 149 | 148 | rexralbidv 3058 |
. . . 4
⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
| 150 | 149 | rspcv 3305 |
. . 3
⊢ (𝑅 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
| 151 | 15, 146, 150 | sylc 65 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
| 152 | 145, 151 | reximddv 3018 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |