MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Visualization version   Unicode version

Theorem caucvgrlem 14403
Description: Lemma for caurcvgr 14404. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1  |-  ( ph  ->  A  C_  RR )
caurcvgr.2  |-  ( ph  ->  F : A --> RR )
caurcvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
caurcvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem.4  |-  ( ph  ->  R  e.  RR+ )
Assertion
Ref Expression
caucvgrlem  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x    R, j, k, x

Proof of Theorem caucvgrlem
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caurcvgr.2 . . . . . . 7  |-  ( ph  ->  F : A --> RR )
2 caurcvgr.1 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
3 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
43ssex 4802 . . . . . . . 8  |-  ( A 
C_  RR  ->  A  e. 
_V )
52, 4syl 17 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
63a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
7 fex2 7121 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
81, 5, 6, 7syl3anc 1326 . . . . . 6  |-  ( ph  ->  F  e.  _V )
9 limsupcl 14204 . . . . . 6  |-  ( F  e.  _V  ->  ( limsup `
 F )  e. 
RR* )
108, 9syl 17 . . . . 5  |-  ( ph  ->  ( limsup `  F )  e.  RR* )
1110adantr 481 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR* )
121adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR )
13 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  A )
1412, 13ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( F `  j
)  e.  RR )
15 caucvgrlem.4 . . . . . . 7  |-  ( ph  ->  R  e.  RR+ )
1615rpred 11872 . . . . . 6  |-  ( ph  ->  R  e.  RR )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR )
1814, 17readdcld 10069 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
19 mnfxr 10096 . . . . . 6  |- -oo  e.  RR*
2019a1i 11 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  e.  RR* )
2114, 17resubcld 10458 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
2221rexrd 10089 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR* )
2321mnfltd 11958 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  <  ( ( F `
 j )  -  R ) )
242adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A  C_  RR )
25 ressxr 10083 . . . . . . . 8  |-  RR  C_  RR*
26 fss 6056 . . . . . . . 8  |-  ( ( F : A --> RR  /\  RR  C_  RR* )  ->  F : A --> RR* )
271, 25, 26sylancl 694 . . . . . . 7  |-  ( ph  ->  F : A --> RR* )
2827adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR* )
29 caurcvgr.3 . . . . . . 7  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
3029adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  sup ( A ,  RR* ,  <  )  = +oo )
3124, 13sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  RR )
32 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
33 breq2 4657 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
j  <_  k  <->  j  <_  m ) )
34 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
3534oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
3635fveq2d 6195 . . . . . . . . . . . 12  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
3736breq1d 4663 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
3833, 37imbi12d 334 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  <-> 
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
3938cbvralv 3171 . . . . . . . . 9  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
4032, 39sylib 208 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) )
4112ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  m )  e.  RR )
4214adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  j )  e.  RR )
4341, 42resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  RR )
4443recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  CC )
4544abscld 14175 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  e.  RR )
4617adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  R  e.  RR )
47 ltle 10126 . . . . . . . . . . . . 13  |-  ( ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
4845, 46, 47syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
4941, 42, 46absdifled 14173 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
5048, 49sylibd 229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) ) )
51 simpl 473 . . . . . . . . . . 11  |-  ( ( ( ( F `  j )  -  R
)  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) )  ->  (
( F `  j
)  -  R )  <_  ( F `  m ) )
5250, 51syl6 35 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
5352imim2d 57 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( ( F `
 j )  -  R )  <_  ( F `  m )
) ) )
5453ralimdva 2962 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) ) )
5540, 54mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
56 breq1 4656 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  <_  m  <->  j  <_  m ) )
5756imbi1d 331 . . . . . . . . 9  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
5857ralbidv 2986 . . . . . . . 8  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
5958rspcev 3309 . . . . . . 7  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
6031, 55, 59syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
6124, 28, 22, 30, 60limsupbnd2 14214 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
6220, 22, 11, 23, 61xrltletrd 11992 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  <  ( limsup `  F
) )
6318rexrd 10089 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR* )
6445adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR )
6517adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR )
66 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  m  e.  A )
67 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
68 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
j  <_  m )
6938rspcv 3305 . . . . . . . . . . . 12  |-  ( m  e.  A  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
7066, 67, 68, 69syl3c 66 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )
7164, 65, 70ltled 10185 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
7241adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  RR )
7314adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  e.  RR )
7472, 73, 65absdifled 14173 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
7571, 74mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
7675simprd 479 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )
7776expr 643 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
7877ralrimiva 2966 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
7956imbi1d 331 . . . . . . . 8  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
8079ralbidv 2986 . . . . . . 7  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
8180rspcev 3309 . . . . . 6  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
8231, 78, 81syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
8324, 28, 63, 82limsupbnd1 14213 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
84 xrre 12000 . . . 4  |-  ( ( ( ( limsup `  F
)  e.  RR*  /\  (
( F `  j
)  +  R )  e.  RR )  /\  ( -oo  <  ( limsup `  F )  /\  ( limsup `
 F )  <_ 
( ( F `  j )  +  R
) ) )  -> 
( limsup `  F )  e.  RR )
8511, 18, 62, 83, 84syl22anc 1327 . . 3  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR )
8685adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  RR )
8772, 86resubcld 10458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  RR )
8887recnd 10068 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  CC )
8988abscld 14175 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  e.  RR )
90 2re 11090 . . . . . . . 8  |-  2  e.  RR
91 remulcl 10021 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  R  e.  RR )  ->  ( 2  x.  R
)  e.  RR )
9290, 65, 91sylancr 695 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  e.  RR )
93 3re 11094 . . . . . . . 8  |-  3  e.  RR
94 remulcl 10021 . . . . . . . 8  |-  ( ( 3  e.  RR  /\  R  e.  RR )  ->  ( 3  x.  R
)  e.  RR )
9593, 65, 94sylancr 695 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 3  x.  R
)  e.  RR )
9672recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  CC )
9786recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  CC )
9896, 97abssubd 14192 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  =  ( abs `  (
( limsup `  F )  -  ( F `  m ) ) ) )
9972, 92resubcld 10458 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  e.  RR )
10021adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
10165recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  CC )
1021012timesd 11275 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
103102oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( F `  m )  -  ( R  +  R ) ) )
10496, 101, 101subsub4d 10423 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  =  ( ( F `  m )  -  ( R  +  R ) ) )
105103, 104eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( ( F `  m
)  -  R )  -  R ) )
10672, 65resubcld 10458 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  e.  RR )
10772, 65, 73lesubaddd 10624 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  <_  ( F `  j )  <->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
10876, 107mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  <_  ( F `  j ) )
109106, 73, 65, 108lesub1dd 10643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  <_  ( ( F `  j )  -  R ) )
110105, 109eqbrtrd 4675 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( ( F `  j )  -  R ) )
11161adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
11299, 100, 86, 110, 111letrd 10194 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( limsup `  F ) )
11318adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
11472, 92readdcld 10069 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  e.  RR )
11583adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
11672, 65readdcld 10069 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  R
)  e.  RR )
11775, 51syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )
11873, 65, 72lesubaddd 10624 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  <->  ( F `  j )  <_  ( ( F `
 m )  +  R ) ) )
119117, 118mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  <_  ( ( F `  m )  +  R ) )
12073, 116, 65, 119leadd1dd 10641 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( (
( F `  m
)  +  R )  +  R ) )
12196, 101, 101addassd 10062 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( R  +  R ) ) )
122102oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  =  ( ( F `  m )  +  ( R  +  R ) ) )
123121, 122eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( 2  x.  R ) ) )
124120, 123breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
12586, 113, 114, 115, 124letrd 10194 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
12686, 72, 92absdifled 14173 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R )  <->  ( (
( F `  m
)  -  ( 2  x.  R ) )  <_  ( limsup `  F
)  /\  ( limsup `  F )  <_  (
( F `  m
)  +  ( 2  x.  R ) ) ) ) )
127112, 125, 126mpbir2and 957 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R ) )
12898, 127eqbrtrd 4675 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <_  ( 2  x.  R ) )
129 2lt3 11195 . . . . . . . 8  |-  2  <  3
13090a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
2  e.  RR )
13193a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
3  e.  RR )
13215adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR+ )
133132adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR+ )
134130, 131, 133ltmul1d 11913 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  <  3  <->  ( 2  x.  R )  <  ( 3  x.  R ) ) )
135129, 134mpbii 223 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  <  ( 3  x.  R ) )
13689, 92, 95, 128, 135lelttrd 10195 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )
137136expr 643 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) )
138137ralrimiva 2966 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
13934oveq1d 6665 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  -  ( limsup `  F ) )  =  ( ( F `  m )  -  ( limsup `
 F ) ) )
140139fveq2d 6195 . . . . . . 7  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( limsup `  F )
) )  =  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) ) )
141140breq1d 4663 . . . . . 6  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R )  <->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
14233, 141imbi12d 334 . . . . 5  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )  <->  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) ) )
143142cbvralv 3171 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
144138, 143sylibr 224 . . 3  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
14585, 144jca 554 . 2  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
146 caurcvgr.4 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
147 breq2 4657 . . . . . 6  |-  ( x  =  R  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) )
148147imbi2d 330 . . . . 5  |-  ( x  =  R  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
149148rexralbidv 3058 . . . 4  |-  ( x  =  R  ->  ( E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
150149rspcv 3305 . . 3  |-  ( R  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )
15115, 146, 150sylc 65 . 2  |-  ( ph  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
152145, 151reximddv 3018 1  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   3c3 11071   RR+crp 11832   abscabs 13974   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202
This theorem is referenced by:  caurcvgr  14404
  Copyright terms: Public domain W3C validator