MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   GIF version

Theorem cgrg3col4 25734
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
cgrg3col4.l 𝐿 = (LineG‘𝐺)
cgrg3col4.x (𝜑𝑋𝑃)
cgrg3col4.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrg3col4.2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Assertion
Ref Expression
cgrg3col4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝐿   𝑦,𝑃   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cgrg3col4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgrg3col4.l . . . . 5 𝐿 = (LineG‘𝐺)
3 eqid 2622 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
4 isleag.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6 isleag.a . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
8 isleag.b . . . . . 6 (𝜑𝐵𝑃)
98ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
10 cgrg3col4.x . . . . . 6 (𝜑𝑋𝑃)
1110ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
12 eqid 2622 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
13 isleag.d . . . . . 6 (𝜑𝐷𝑃)
1413ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
15 isleag.e . . . . . 6 (𝜑𝐸𝑃)
1615ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
17 eqid 2622 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
18 simpr 477 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
19 isleag.c . . . . . . 7 (𝜑𝐶𝑃)
20 isleag.f . . . . . . 7 (𝜑𝐹𝑃)
21 cgrg3col4.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 25415 . . . . . 6 (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
2322ad2antrr 762 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 25462 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
2521ad4antr 768 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
265ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
2711ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑋𝑃)
287ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
29 simplr 792 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
3014ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
319ad2antrr 762 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
3216ad2antrr 762 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
33 simpr 477 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 25417 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 25375 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 25416 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
3719ad4antr 768 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐶𝑃)
3820ad4antr 768 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
39 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
4039ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴 = 𝐶)
4140oveq2d 6666 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
424adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
436adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
4419adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → 𝐶𝑃)
4513adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
4620adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → 𝐹𝑃)
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 25417 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷))
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 25375 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
4948adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 25377 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐷 = 𝐹)
5150ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷 = 𝐹)
5251oveq2d 6666 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
5334, 41, 523eqtr3d 2664 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 25375 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
5535, 36, 543jca 1242 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
5625, 55jca 554 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))
571, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 25426 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
5856, 57mpbird 247 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
5958ex 450 . . . . 5 ((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
6059reximdva 3017 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
6124, 60mpd 15 . . 3 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
62 eqid 2622 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
6342adantr 481 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6463ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
658ad2antrr 762 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
6665ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
6743adantr 481 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
6867ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
6910ad2antrr 762 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
7069ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋𝑃)
7115ad2antrr 762 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
7271ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
7345adantr 481 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
7473ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
75 simplr 792 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥𝑃)
76 simpr 477 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
7776ad2antrr 762 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
78 simpr 477 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
7922ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
801, 3, 2, 63, 65, 67, 69, 76ncolne1 25520 . . . . . . . . . . . . . 14 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝐴)
8180necomd 2849 . . . . . . . . . . . . 13 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝐵)
821, 17, 3, 63, 67, 65, 73, 71, 79, 81tgcgrneq 25378 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝐸)
8382ad2antrr 762 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝐸)
8483neneqd 2799 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸)
8578, 84jca 554 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
86 ioran 511 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
8785, 86sylibr 224 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
881, 2, 3, 64, 74, 72, 75, 87ncolcom 25456 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
891, 2, 3, 64, 72, 74, 75, 88ncolrot1 25457 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥))
901, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 25375 . . . . . . 7 (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
9190ad4antr 768 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
921, 17, 3, 2, 62, 64, 66, 68, 70, 72, 74, 75, 77, 89, 91trgcopy 25696 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥))
9321ad6antr 772 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
9464ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
9566ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐵𝑃)
9668ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴𝑃)
9770ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑋𝑃)
9872ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐸𝑃)
9974ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷𝑃)
100 simplr 792 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑦𝑃)
101 simpr 477 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩)
1021, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101cgr3simp2 25416 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1031, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101cgr3simp3 25417 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1041, 17, 3, 94, 97, 95, 100, 98, 103tgcgrcomlr 25375 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
10544ad5antr 770 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐶𝑃)
10646ad5antr 770 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐹𝑃)
1071, 17, 3, 94, 96, 97, 99, 100, 102tgcgrcomlr 25375 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
108 simp-6r 811 . . . . . . . . . . . . . 14 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴 = 𝐶)
109108oveq2d 6666 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
11050ad5antr 770 . . . . . . . . . . . . . 14 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷 = 𝐹)
111110oveq2d 6666 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
112107, 109, 1113eqtr3d 2664 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
1131, 17, 3, 94, 97, 105, 100, 106, 112tgcgrcomlr 25375 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
114102, 104, 1133jca 1242 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
11593, 114jca 554 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))
1161, 17, 3, 12, 94, 96, 95, 105, 97, 99, 98, 106, 100tgcgr4 25426 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
117115, 116mpbird 247 . . . . . . . 8 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
118117ex 450 . . . . . . 7 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
119118adantrd 484 . . . . . 6 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → ((⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
120119reximdva 3017 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
12192, 120mpd 15 . . . 4 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
1221, 2, 3, 63, 67, 69, 65, 76ncoltgdim2 25460 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2)
1231, 3, 2, 63, 122, 73, 71, 82tglowdim2ln 25546 . . . 4 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸))
124121, 123r19.29a 3078 . . 3 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
12561, 124pm2.61dan 832 . 2 ((𝜑𝐴 = 𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
126 cgrg3col4.2 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1271, 2, 3, 4, 6, 19, 10, 126colcom 25453 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
1281, 2, 3, 4, 19, 6, 10, 127colrot1 25454 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1291, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 128, 48lnext 25462 . . . 4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
130129adantr 481 . . 3 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
13121ad3antrrr 766 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1324ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐺 ∈ TarskiG)
13310ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑋𝑃)
1346ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝑃)
135 simplr 792 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑦𝑃)
13613ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐷𝑃)
13719ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐶𝑃)
13820ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐹𝑃)
139 simpr 477 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
1401, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139cgr3simp3 25417 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
1411, 17, 3, 132, 133, 134, 135, 136, 140tgcgrcomlr 25375 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1428ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐵𝑃)
14315ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐸𝑃)
144128ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
14522ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
1461, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 25416 . . . . . . . . . . . 12 (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹))
1471, 17, 3, 4, 8, 19, 15, 20, 146tgcgrcomlr 25375 . . . . . . . . . . 11 (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
148147ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
149 simpllr 799 . . . . . . . . . 10 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝐶)
1501, 2, 3, 132, 134, 137, 133, 12, 136, 138, 17, 142, 135, 143, 144, 139, 145, 148, 149tgfscgr 25463 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1511, 17, 3, 132, 133, 142, 135, 143, 150tgcgrcomlr 25375 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
1521, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139cgr3simp2 25416 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
153141, 151, 1523jca 1242 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
154131, 153jca 554 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))
1551, 17, 3, 12, 132, 134, 142, 137, 133, 136, 143, 138, 135tgcgr4 25426 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
156154, 155mpbird 247 . . . . 5 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
157156ex 450 . . . 4 (((𝜑𝐴𝐶) ∧ 𝑦𝑃) → (⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
158157reximdva 3017 . . 3 ((𝜑𝐴𝐶) → (∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
159130, 158mpd 15 . 2 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
160125, 159pm2.61dane 2881 1 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  ⟨“cs4 13588  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-ismt 25428  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator