MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   Unicode version

Theorem cgrg3col4 25734
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p  |-  P  =  ( Base `  G
)
isleag.g  |-  ( ph  ->  G  e. TarskiG )
isleag.a  |-  ( ph  ->  A  e.  P )
isleag.b  |-  ( ph  ->  B  e.  P )
isleag.c  |-  ( ph  ->  C  e.  P )
isleag.d  |-  ( ph  ->  D  e.  P )
isleag.e  |-  ( ph  ->  E  e.  P )
isleag.f  |-  ( ph  ->  F  e.  P )
cgrg3col4.l  |-  L  =  (LineG `  G )
cgrg3col4.x  |-  ( ph  ->  X  e.  P )
cgrg3col4.1  |-  ( ph  ->  <" A B C "> (cgrG `  G ) <" D E F "> )
cgrg3col4.2  |-  ( ph  ->  ( X  e.  ( A L C )  \/  A  =  C ) )
Assertion
Ref Expression
cgrg3col4  |-  ( ph  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
Distinct variable groups:    y, A    y, B    y, C    y, D    y, E    y, F    y, G    y, L    y, P    y, X    ph, y

Proof of Theorem cgrg3col4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5  |-  P  =  ( Base `  G
)
2 cgrg3col4.l . . . . 5  |-  L  =  (LineG `  G )
3 eqid 2622 . . . . 5  |-  (Itv `  G )  =  (Itv
`  G )
4 isleag.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
54ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  G  e. TarskiG )
6 isleag.a . . . . . 6  |-  ( ph  ->  A  e.  P )
76ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  A  e.  P )
8 isleag.b . . . . . 6  |-  ( ph  ->  B  e.  P )
98ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  B  e.  P )
10 cgrg3col4.x . . . . . 6  |-  ( ph  ->  X  e.  P )
1110ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  X  e.  P )
12 eqid 2622 . . . . 5  |-  (cgrG `  G )  =  (cgrG `  G )
13 isleag.d . . . . . 6  |-  ( ph  ->  D  e.  P )
1413ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  D  e.  P )
15 isleag.e . . . . . 6  |-  ( ph  ->  E  e.  P )
1615ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E  e.  P )
17 eqid 2622 . . . . 5  |-  ( dist `  G )  =  (
dist `  G )
18 simpr 477 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  -> 
( B  e.  ( A L X )  \/  A  =  X ) )
19 isleag.c . . . . . . 7  |-  ( ph  ->  C  e.  P )
20 isleag.f . . . . . . 7  |-  ( ph  ->  F  e.  P )
21 cgrg3col4.1 . . . . . . 7  |-  ( ph  ->  <" A B C "> (cgrG `  G ) <" D E F "> )
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 25415 . . . . . 6  |-  ( ph  ->  ( A ( dist `  G ) B )  =  ( D (
dist `  G ) E ) )
2322ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  -> 
( A ( dist `  G ) B )  =  ( D (
dist `  G ) E ) )
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 25462 . . . 4  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E. y  e.  P  <" A B X "> (cgrG `  G ) <" D E y "> )
2521ad4antr 768 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  <" A B C "> (cgrG `  G ) <" D E F "> )
265ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  G  e. TarskiG )
2711ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  X  e.  P
)
287ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  A  e.  P
)
29 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  y  e.  P
)
3014ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  D  e.  P
)
319ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  B  e.  P
)
3216ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  E  e.  P
)
33 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  <" A B X "> (cgrG `  G ) <" D E y "> )
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 25417 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( X (
dist `  G ) A )  =  ( y ( dist `  G
) D ) )
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 25375 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( A (
dist `  G ) X )  =  ( D ( dist `  G
) y ) )
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 25416 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y ) )
3719ad4antr 768 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  C  e.  P
)
3820ad4antr 768 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  F  e.  P
)
39 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  C )  ->  A  =  C )
4039ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  A  =  C )
4140oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( X (
dist `  G ) A )  =  ( X ( dist `  G
) C ) )
424adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  G  e. TarskiG )
436adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  A  e.  P )
4419adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  C  e.  P )
4513adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  D  e.  P )
4620adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  F  e.  P )
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 25417 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ( dist `  G ) A )  =  ( F (
dist `  G ) D ) )
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 25375 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A ( dist `  G ) C )  =  ( D (
dist `  G ) F ) )
4948adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  C )  ->  ( A ( dist `  G
) C )  =  ( D ( dist `  G ) F ) )
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 25377 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  C )  ->  D  =  F )
5150ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  D  =  F )
5251oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( y (
dist `  G ) D )  =  ( y ( dist `  G
) F ) )
5334, 41, 523eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( X (
dist `  G ) C )  =  ( y ( dist `  G
) F ) )
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 25375 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) )
5535, 36, 543jca 1242 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( ( A ( dist `  G
) X )  =  ( D ( dist `  G ) y )  /\  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y )  /\  ( C ( dist `  G
) X )  =  ( F ( dist `  G ) y ) ) )
5625, 55jca 554 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) )
571, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 25426 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  ( <" A B C X "> (cgrG `  G ) <" D E F y ">  <->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) ) )
5856, 57mpbird 247 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  /\  <" A B X "> (cgrG `  G ) <" D E y "> )  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
5958ex 450 . . . . 5  |-  ( ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  y  e.  P )  ->  ( <" A B X "> (cgrG `  G ) <" D E y ">  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
6059reximdva 3017 . . . 4  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  -> 
( E. y  e.  P  <" A B X "> (cgrG `  G ) <" D E y ">  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> ) )
6124, 60mpd 15 . . 3  |-  ( ( ( ph  /\  A  =  C )  /\  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
62 eqid 2622 . . . . . 6  |-  (hlG `  G )  =  (hlG
`  G )
6342adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  G  e. TarskiG )
6463ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  G  e. TarskiG )
658ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  B  e.  P )
6665ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  B  e.  P )
6743adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  A  e.  P )
6867ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  A  e.  P )
6910ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  X  e.  P )
7069ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  X  e.  P )
7115ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E  e.  P )
7271ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  E  e.  P )
7345adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  D  e.  P )
7473ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  D  e.  P )
75 simplr 792 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  x  e.  P )
76 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  -.  ( B  e.  ( A L X )  \/  A  =  X ) )
7776ad2antrr 762 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  ( B  e.  ( A L X )  \/  A  =  X ) )
78 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  x  e.  ( D L E ) )
7922ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  ( A
( dist `  G ) B )  =  ( D ( dist `  G
) E ) )
801, 3, 2, 63, 65, 67, 69, 76ncolne1 25520 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  B  =/=  A )
8180necomd 2849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  A  =/=  B )
821, 17, 3, 63, 67, 65, 73, 71, 79, 81tgcgrneq 25378 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  D  =/=  E )
8382ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  D  =/=  E )
8483neneqd 2799 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  D  =  E )
8578, 84jca 554 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  ( -.  x  e.  ( D L E )  /\  -.  D  =  E )
)
86 ioran 511 . . . . . . . . 9  |-  ( -.  ( x  e.  ( D L E )  \/  D  =  E )  <->  ( -.  x  e.  ( D L E )  /\  -.  D  =  E ) )
8785, 86sylibr 224 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  (
x  e.  ( D L E )  \/  D  =  E ) )
881, 2, 3, 64, 74, 72, 75, 87ncolcom 25456 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  (
x  e.  ( E L D )  \/  E  =  D ) )
891, 2, 3, 64, 72, 74, 75, 88ncolrot1 25457 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  -.  ( E  e.  ( D L x )  \/  D  =  x ) )
901, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 25375 . . . . . . 7  |-  ( ph  ->  ( B ( dist `  G ) A )  =  ( E (
dist `  G ) D ) )
9190ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  ( B
( dist `  G ) A )  =  ( E ( dist `  G
) D ) )
921, 17, 3, 2, 62, 64, 66, 68, 70, 72, 74, 75, 77, 89, 91trgcopy 25696 . . . . 5  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  E. y  e.  P  ( <" B A X "> (cgrG `  G ) <" E D y ">  /\  y
( (hpG `  G
) `  ( E L D ) ) x ) )
9321ad6antr 772 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  <" A B C "> (cgrG `  G ) <" D E F "> )
9464ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  G  e. TarskiG )
9566ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  B  e.  P
)
9668ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  A  e.  P
)
9770ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  X  e.  P
)
9872ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  E  e.  P
)
9974ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  D  e.  P
)
100 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  y  e.  P
)
101 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  <" B A X "> (cgrG `  G ) <" E D y "> )
1021, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101cgr3simp2 25416 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( A (
dist `  G ) X )  =  ( D ( dist `  G
) y ) )
1031, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101cgr3simp3 25417 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( X (
dist `  G ) B )  =  ( y ( dist `  G
) E ) )
1041, 17, 3, 94, 97, 95, 100, 98, 103tgcgrcomlr 25375 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y ) )
10544ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  C  e.  P
)
10646ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  F  e.  P
)
1071, 17, 3, 94, 96, 97, 99, 100, 102tgcgrcomlr 25375 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( X (
dist `  G ) A )  =  ( y ( dist `  G
) D ) )
108 simp-6r 811 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  A  =  C )
109108oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( X (
dist `  G ) A )  =  ( X ( dist `  G
) C ) )
11050ad5antr 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  D  =  F )
111110oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( y (
dist `  G ) D )  =  ( y ( dist `  G
) F ) )
112107, 109, 1113eqtr3d 2664 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( X (
dist `  G ) C )  =  ( y ( dist `  G
) F ) )
1131, 17, 3, 94, 97, 105, 100, 106, 112tgcgrcomlr 25375 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) )
114102, 104, 1133jca 1242 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( ( A ( dist `  G
) X )  =  ( D ( dist `  G ) y )  /\  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y )  /\  ( C ( dist `  G
) X )  =  ( F ( dist `  G ) y ) ) )
11593, 114jca 554 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) )
1161, 17, 3, 12, 94, 96, 95, 105, 97, 99, 98, 106, 100tgcgr4 25426 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  ( <" A B C X "> (cgrG `  G ) <" D E F y ">  <->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) ) )
117115, 116mpbird 247 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  /\  <" B A X "> (cgrG `  G ) <" E D y "> )  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
118117ex 450 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  ->  ( <" B A X "> (cgrG `  G ) <" E D y ">  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
119118adantrd 484 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  /\  y  e.  P )  ->  ( ( <" B A X "> (cgrG `  G ) <" E D y ">  /\  y ( (hpG `  G ) `  ( E L D ) ) x )  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
120119reximdva 3017 . . . . 5  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  ( E. y  e.  P  ( <" B A X "> (cgrG `  G ) <" E D y ">  /\  y ( (hpG `  G ) `  ( E L D ) ) x )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
12192, 120mpd 15 . . . 4  |-  ( ( ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  /\  x  e.  P )  /\  -.  x  e.  ( D L E ) )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
1221, 2, 3, 63, 67, 69, 65, 76ncoltgdim2 25460 . . . . 5  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  GDimTarskiG 2 )
1231, 3, 2, 63, 122, 73, 71, 82tglowdim2ln 25546 . . . 4  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E. x  e.  P  -.  x  e.  ( D L E ) )
124121, 123r19.29a 3078 . . 3  |-  ( ( ( ph  /\  A  =  C )  /\  -.  ( B  e.  ( A L X )  \/  A  =  X ) )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
12561, 124pm2.61dan 832 . 2  |-  ( (
ph  /\  A  =  C )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
126 cgrg3col4.2 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( A L C )  \/  A  =  C ) )
1271, 2, 3, 4, 6, 19, 10, 126colcom 25453 . . . . . 6  |-  ( ph  ->  ( X  e.  ( C L A )  \/  C  =  A ) )
1281, 2, 3, 4, 19, 6, 10, 127colrot1 25454 . . . . 5  |-  ( ph  ->  ( C  e.  ( A L X )  \/  A  =  X ) )
1291, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 128, 48lnext 25462 . . . 4  |-  ( ph  ->  E. y  e.  P  <" A C X "> (cgrG `  G ) <" D F y "> )
130129adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  C )  ->  E. y  e.  P  <" A C X "> (cgrG `  G ) <" D F y "> )
13121ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  <" A B C "> (cgrG `  G ) <" D E F "> )
1324ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  G  e. TarskiG )
13310ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  X  e.  P
)
1346ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  A  e.  P
)
135 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  y  e.  P
)
13613ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  D  e.  P
)
13719ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  C  e.  P
)
13820ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  F  e.  P
)
139 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  <" A C X "> (cgrG `  G ) <" D F y "> )
1401, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139cgr3simp3 25417 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( X (
dist `  G ) A )  =  ( y ( dist `  G
) D ) )
1411, 17, 3, 132, 133, 134, 135, 136, 140tgcgrcomlr 25375 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( A (
dist `  G ) X )  =  ( D ( dist `  G
) y ) )
1428ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  B  e.  P
)
14315ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  E  e.  P
)
144128ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( C  e.  ( A L X )  \/  A  =  X ) )
14522ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( A (
dist `  G ) B )  =  ( D ( dist `  G
) E ) )
1461, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 25416 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ( dist `  G ) C )  =  ( E (
dist `  G ) F ) )
1471, 17, 3, 4, 8, 19, 15, 20, 146tgcgrcomlr 25375 . . . . . . . . . . 11  |-  ( ph  ->  ( C ( dist `  G ) B )  =  ( F (
dist `  G ) E ) )
148147ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( C (
dist `  G ) B )  =  ( F ( dist `  G
) E ) )
149 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  A  =/=  C
)
1501, 2, 3, 132, 134, 137, 133, 12, 136, 138, 17, 142, 135, 143, 144, 139, 145, 148, 149tgfscgr 25463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( X (
dist `  G ) B )  =  ( y ( dist `  G
) E ) )
1511, 17, 3, 132, 133, 142, 135, 143, 150tgcgrcomlr 25375 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y ) )
1521, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139cgr3simp2 25416 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) )
153141, 151, 1523jca 1242 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( ( A ( dist `  G
) X )  =  ( D ( dist `  G ) y )  /\  ( B (
dist `  G ) X )  =  ( E ( dist `  G
) y )  /\  ( C ( dist `  G
) X )  =  ( F ( dist `  G ) y ) ) )
154131, 153jca 554 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) )
1551, 17, 3, 12, 132, 134, 142, 137, 133, 136, 143, 138, 135tgcgr4 25426 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  ( <" A B C X "> (cgrG `  G ) <" D E F y ">  <->  ( <" A B C "> (cgrG `  G ) <" D E F ">  /\  (
( A ( dist `  G ) X )  =  ( D (
dist `  G )
y )  /\  ( B ( dist `  G
) X )  =  ( E ( dist `  G ) y )  /\  ( C (
dist `  G ) X )  =  ( F ( dist `  G
) y ) ) ) ) )
156154, 155mpbird 247 . . . . 5  |-  ( ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  /\  <" A C X "> (cgrG `  G ) <" D F y "> )  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
157156ex 450 . . . 4  |-  ( ( ( ph  /\  A  =/=  C )  /\  y  e.  P )  ->  ( <" A C X "> (cgrG `  G ) <" D F y ">  ->  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
158157reximdva 3017 . . 3  |-  ( (
ph  /\  A  =/=  C )  ->  ( E. y  e.  P  <" A C X "> (cgrG `  G ) <" D F y ">  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
)
159130, 158mpd 15 . 2  |-  ( (
ph  /\  A  =/=  C )  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
160125, 159pm2.61dane 2881 1  |-  ( ph  ->  E. y  e.  P  <" A B C X "> (cgrG `  G ) <" D E F y "> )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   <"cs4 13588   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-ismt 25428  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator