![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrrhm | Structured version Visualization version GIF version |
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
chrrhm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl1 18719 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
2 | eqid 2622 | . . . . . . . 8 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
3 | 2 | zrhrhm 19860 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
5 | zringbas 19824 | . . . . . . 7 ⊢ ℤ = (Base‘ℤring) | |
6 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 5, 6 | rhmf 18726 | . . . . . 6 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
8 | ffn 6045 | . . . . . 6 ⊢ ((ℤRHom‘𝑅):ℤ⟶(Base‘𝑅) → (ℤRHom‘𝑅) Fn ℤ) | |
9 | 4, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) Fn ℤ) |
10 | eqid 2622 | . . . . . . 7 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
11 | 10 | chrcl 19874 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0) |
12 | nn0z 11400 | . . . . . 6 ⊢ ((chr‘𝑅) ∈ ℕ0 → (chr‘𝑅) ∈ ℤ) | |
13 | 1, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑅) ∈ ℤ) |
14 | fvco2 6273 | . . . . 5 ⊢ (((ℤRHom‘𝑅) Fn ℤ ∧ (chr‘𝑅) ∈ ℤ) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅)))) | |
15 | 9, 13, 14 | syl2anc 693 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅)))) |
16 | eqid 2622 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 10, 2, 16 | chrid 19875 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g‘𝑅)) |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g‘𝑅)) |
19 | 18 | fveq2d 6195 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))) = (𝐹‘(0g‘𝑅))) |
20 | 15, 19 | eqtrd 2656 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘(0g‘𝑅))) |
21 | rhmco 18737 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆)) | |
22 | 4, 21 | mpdan 702 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆)) |
23 | rhmrcl2 18720 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
24 | eqid 2622 | . . . . . . 7 ⊢ (ℤRHom‘𝑆) = (ℤRHom‘𝑆) | |
25 | 24 | zrhrhmb 19859 | . . . . . 6 ⊢ (𝑆 ∈ Ring → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))) |
27 | 22, 26 | mpbid 222 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)) |
28 | 27 | fveq1d 6193 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = ((ℤRHom‘𝑆)‘(chr‘𝑅))) |
29 | rhmghm 18725 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
30 | eqid 2622 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
31 | 16, 30 | ghmid 17666 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
32 | 29, 31 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
33 | 20, 28, 32 | 3eqtr3d 2664 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆)) |
34 | eqid 2622 | . . . 4 ⊢ (chr‘𝑆) = (chr‘𝑆) | |
35 | 34, 24, 30 | chrdvds 19876 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ (chr‘𝑅) ∈ ℤ) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆))) |
36 | 23, 13, 35 | syl2anc 693 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆))) |
37 | 33, 36 | mpbird 247 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℕ0cn0 11292 ℤcz 11377 ∥ cdvds 14983 Basecbs 15857 0gc0g 16100 GrpHom cghm 17657 Ringcrg 18547 RingHom crh 18712 ℤringzring 19818 ℤRHomczrh 19848 chrcchr 19850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-od 17948 df-cmn 18195 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-rnghom 18715 df-subrg 18778 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-chr 19854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |