MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   GIF version

Theorem ege2le3 14820
Description: Lemma for egt2lt3 14934. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . . . . 6 0 = (ℤ‘0)
2 0nn0 11307 . . . . . 6 0 ∈ ℕ0
3 1e0p1 11552 . . . . . 6 1 = (0 + 1)
4 0z 11388 . . . . . . 7 0 ∈ ℤ
5 fveq2 6191 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = (!‘0))
6 fac0 13063 . . . . . . . . . . . 12 (!‘0) = 1
75, 6syl6eq 2672 . . . . . . . . . . 11 (𝑛 = 0 → (!‘𝑛) = 1)
87oveq2d 6666 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
9 ax-1cn 9994 . . . . . . . . . . 11 1 ∈ ℂ
109div1i 10753 . . . . . . . . . 10 (1 / 1) = 1
118, 10syl6eq 2672 . . . . . . . . 9 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
12 erelem1.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
13 1ex 10035 . . . . . . . . 9 1 ∈ V
1411, 12, 13fvmpt 6282 . . . . . . . 8 (0 ∈ ℕ0 → (𝐺‘0) = 1)
152, 14mp1i 13 . . . . . . 7 (⊤ → (𝐺‘0) = 1)
164, 15seq1i 12815 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘0) = 1)
17 1nn0 11308 . . . . . . 7 1 ∈ ℕ0
18 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 1 → (!‘𝑛) = (!‘1))
19 fac1 13064 . . . . . . . . . . 11 (!‘1) = 1
2018, 19syl6eq 2672 . . . . . . . . . 10 (𝑛 = 1 → (!‘𝑛) = 1)
2120oveq2d 6666 . . . . . . . . 9 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
2221, 10syl6eq 2672 . . . . . . . 8 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
2322, 12, 13fvmpt 6282 . . . . . . 7 (1 ∈ ℕ0 → (𝐺‘1) = 1)
2417, 23mp1i 13 . . . . . 6 (⊤ → (𝐺‘1) = 1)
251, 2, 3, 16, 24seqp1i 12817 . . . . 5 (⊤ → (seq0( + , 𝐺)‘1) = (1 + 1))
26 df-2 11079 . . . . 5 2 = (1 + 1)
2725, 26syl6eqr 2674 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
2817a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
29 nn0z 11400 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
30 1exp 12889 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3129, 30syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3231oveq1d 6665 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
3332mpteq2ia 4740 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
3412, 33eqtr4i 2647 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
3534efcvg 14815 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
369, 35mp1i 13 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
37 df-e 14799 . . . . . 6 e = (exp‘1)
3836, 37syl6breqr 4695 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
39 fveq2 6191 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
4039oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
41 ovex 6678 . . . . . . . 8 (1 / (!‘𝑘)) ∈ V
4240, 12, 41fvmpt 6282 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
4342adantl 482 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
44 faccl 13070 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4544adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4645nnrecred 11066 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
4743, 46eqeltrd 2701 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4845nnred 11035 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
4945nngt0d 11064 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
50 1re 10039 . . . . . . . 8 1 ∈ ℝ
51 0le1 10551 . . . . . . . 8 0 ≤ 1
52 divge0 10892 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
5350, 51, 52mpanl12 718 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
5448, 49, 53syl2anc 693 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
5554, 43breqtrrd 4681 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
561, 28, 38, 47, 55climserle 14393 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
5727, 56eqbrtrrd 4677 . . 3 (⊤ → 2 ≤ e)
5857trud 1493 . 2 2 ≤ e
59 nnuz 11723 . . . . . 6 ℕ = (ℤ‘1)
60 1zzd 11408 . . . . . 6 (⊤ → 1 ∈ ℤ)
612a1i 11 . . . . . . . 8 (⊤ → 0 ∈ ℕ0)
6247recnd 10068 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
631, 61, 62, 38clim2ser 14385 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
64 0p1e1 11132 . . . . . . . 8 (0 + 1) = 1
65 seqeq1 12804 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
6664, 65ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
6716trud 1493 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
6867oveq2i 6661 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
6963, 66, 683brtr3g 4686 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
70 2cnd 11093 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
71 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
72 eqid 2622 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
73 ovex 6678 . . . . . . . . . . . . 13 ((1 / 2)↑𝑘) ∈ V
7471, 72, 73fvmpt 6282 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
7574adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
76 halfre 11246 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
77 simpr 477 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
78 reexpcl 12877 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
7976, 77, 78sylancr 695 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
8079recnd 10068 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
8175, 80eqeltrd 2701 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
82 1lt2 11194 . . . . . . . . . . . . . 14 1 < 2
83 2re 11090 . . . . . . . . . . . . . . 15 2 ∈ ℝ
84 0le2 11111 . . . . . . . . . . . . . . 15 0 ≤ 2
85 absid 14036 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
8683, 84, 85mp2an 708 . . . . . . . . . . . . . 14 (abs‘2) = 2
8782, 86breqtrri 4680 . . . . . . . . . . . . 13 1 < (abs‘2)
8887a1i 11 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
8970, 88, 75georeclim 14603 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
90 2m1e1 11135 . . . . . . . . . . . . 13 (2 − 1) = 1
9190oveq2i 6661 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
92 2cn 11091 . . . . . . . . . . . . 13 2 ∈ ℂ
9392div1i 10753 . . . . . . . . . . . 12 (2 / 1) = 2
9491, 93eqtri 2644 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
9589, 94syl6breq 4694 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
961, 61, 81, 95clim2ser 14385 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
97 seqeq1 12804 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
9864, 97ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
99 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
100 ovex 6678 . . . . . . . . . . . . . . . . 17 ((1 / 2)↑0) ∈ V
10199, 72, 100fvmpt 6282 . . . . . . . . . . . . . . . 16 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
103 halfcn 11247 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℂ
104 exp0 12864 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) = 1
106102, 105eqtri 2644 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
107106a1i 11 . . . . . . . . . . . . 13 (⊤ → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1)
1084, 107seq1i 12815 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
109108trud 1493 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
110109oveq2i 6661 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
111110, 90eqtri 2644 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
11296, 98, 1113brtr3g 4686 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
113 nnnn0 11299 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
114113, 81sylan2 491 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
11571oveq2d 6666 . . . . . . . . . . 11 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
116 erelem1.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
117 ovex 6678 . . . . . . . . . . 11 (2 · ((1 / 2)↑𝑘)) ∈ V
118115, 116, 117fvmpt 6282 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
119118adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
120113, 75sylan2 491 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
121120oveq2d 6666 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
122119, 121eqtr4d 2659 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
12359, 60, 70, 112, 114, 122isermulc2 14388 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
124 2t1e2 11176 . . . . . . 7 (2 · 1) = 2
125123, 124syl6breq 4694 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
126113, 47sylan2 491 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
127 remulcl 10021 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
12883, 79, 127sylancr 695 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
129113, 128sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
130119, 129eqeltrd 2701 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
131 faclbnd2 13078 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
132131adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
133 2nn 11185 . . . . . . . . . . . . . 14 2 ∈ ℕ
134 nnexpcl 12873 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
135133, 77, 134sylancr 695 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
136135nnrpd 11870 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
137136rphalfcld 11884 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
13845nnrpd 11870 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
139137, 138lerecd 11891 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
140132, 139mpbid 222 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
141 2cnd 11093 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
142135nncnd 11036 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
143135nnne0d 11065 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ≠ 0)
144141, 142, 143divrecd 10804 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
145 2ne0 11113 . . . . . . . . . . . 12 2 ≠ 0
146 recdiv 10731 . . . . . . . . . . . 12 ((((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
14792, 145, 146mpanr12 721 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
148142, 143, 147syl2anc 693 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
149145a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
150 nn0z 11400 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
151150adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
152141, 149, 151exprecd 13016 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
153152oveq2d 6666 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
154144, 148, 1533eqtr4rd 2667 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
155140, 154breqtrrd 4681 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
156113, 155sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
157113, 43sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
158156, 157, 1193brtr4d 4685 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
15959, 60, 69, 125, 126, 130, 158iserle 14390 . . . . 5 (⊤ → (e − 1) ≤ 2)
160159trud 1493 . . . 4 (e − 1) ≤ 2
161 ere 14819 . . . . 5 e ∈ ℝ
162161, 50, 83lesubaddi 10586 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
163160, 162mpbi 220 . . 3 e ≤ (2 + 1)
164 df-3 11080 . . 3 3 = (2 + 1)
165163, 164breqtrri 4680 . 2 e ≤ 3
16658, 165pm3.2i 471 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cz 11377  seqcseq 12801  cexp 12860  !cfa 13060  abscabs 13974  cli 14215  expce 14792  eceu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799
This theorem is referenced by:  egt2lt3  14934
  Copyright terms: Public domain W3C validator