![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnlmod | Structured version Visualization version GIF version |
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
Ref | Expression |
---|---|
cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
cnlmod | ⊢ 𝑊 ∈ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10032 | . 2 ⊢ 0 ∈ ℂ | |
2 | cnlmod.w | . . . . . 6 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
3 | 2 | cnlmodlem1 22936 | . . . . 5 ⊢ (Base‘𝑊) = ℂ |
4 | 3 | eqcomi 2631 | . . . 4 ⊢ ℂ = (Base‘𝑊) |
5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → ℂ = (Base‘𝑊)) |
6 | 2 | cnlmodlem2 22937 | . . . . 5 ⊢ (+g‘𝑊) = + |
7 | 6 | eqcomi 2631 | . . . 4 ⊢ + = (+g‘𝑊) |
8 | 7 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → + = (+g‘𝑊)) |
9 | addcl 10018 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | 9 | 3adant1 1079 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
11 | addass 10023 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
12 | 11 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
13 | id 22 | . . 3 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
14 | addid2 10219 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
15 | 14 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
16 | negcl 10281 | . . . 4 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
17 | 16 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ) |
18 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
19 | 16, 18 | addcomd 10238 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
20 | 19 | adantl 482 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
21 | negid 10328 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
22 | 21 | adantl 482 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0) |
23 | 20, 22 | eqtrd 2656 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0) |
24 | 5, 8, 10, 12, 13, 15, 17, 23 | isgrpd 17444 | . 2 ⊢ (0 ∈ ℂ → 𝑊 ∈ Grp) |
25 | 4 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘𝑊)) |
26 | 7 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘𝑊)) |
27 | 2 | cnlmodlem3 22938 | . . . . 5 ⊢ (Scalar‘𝑊) = ℂfld |
28 | 27 | eqcomi 2631 | . . . 4 ⊢ ℂfld = (Scalar‘𝑊) |
29 | 28 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊)) |
30 | 2 | cnlmod4 22939 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = · |
31 | 30 | eqcomi 2631 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) |
32 | 31 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = ( ·𝑠 ‘𝑊)) |
33 | cnfldbas 19750 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
34 | 33 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘ℂfld)) |
35 | cnfldadd 19751 | . . . 4 ⊢ + = (+g‘ℂfld) | |
36 | 35 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘ℂfld)) |
37 | cnfldmul 19752 | . . . 4 ⊢ · = (.r‘ℂfld) | |
38 | 37 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = (.r‘ℂfld)) |
39 | cnfld1 19771 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → 1 = (1r‘ℂfld)) |
41 | cnring 19768 | . . . 4 ⊢ ℂfld ∈ Ring | |
42 | 41 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld ∈ Ring) |
43 | id 22 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ Grp) | |
44 | mulcl 10020 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
45 | 44 | 3adant1 1079 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
46 | adddi 10025 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
47 | 46 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
48 | adddir 10031 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
49 | 48 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
50 | mulass 10024 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
51 | 50 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
52 | mulid2 10038 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
53 | 52 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
54 | 25, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53 | islmodd 18869 | . 2 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ LMod) |
55 | 1, 24, 54 | mp2b 10 | 1 ⊢ 𝑊 ∈ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 {cpr 4179 〈cop 4183 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 -cneg 10267 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 Grpcgrp 17422 1rcur 18501 Ringcrg 18547 LModclmod 18863 ℂfldccnfld 19746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-cmn 18195 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-lmod 18865 df-cnfld 19747 |
This theorem is referenced by: cnstrcvs 22941 |
Copyright terms: Public domain | W3C validator |