MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlmod Structured version   Visualization version   GIF version

Theorem cnlmod 22940
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnlmod 𝑊 ∈ LMod

Proof of Theorem cnlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10032 . 2 0 ∈ ℂ
2 cnlmod.w . . . . . 6 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
32cnlmodlem1 22936 . . . . 5 (Base‘𝑊) = ℂ
43eqcomi 2631 . . . 4 ℂ = (Base‘𝑊)
54a1i 11 . . 3 (0 ∈ ℂ → ℂ = (Base‘𝑊))
62cnlmodlem2 22937 . . . . 5 (+g𝑊) = +
76eqcomi 2631 . . . 4 + = (+g𝑊)
87a1i 11 . . 3 (0 ∈ ℂ → + = (+g𝑊))
9 addcl 10018 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1093adant1 1079 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
11 addass 10023 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211adantl 482 . . 3 ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 id 22 . . 3 (0 ∈ ℂ → 0 ∈ ℂ)
14 addid2 10219 . . . 4 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1514adantl 482 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
16 negcl 10281 . . . 4 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
1716adantl 482 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ)
18 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
1916, 18addcomd 10238 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
2019adantl 482 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
21 negid 10328 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
2221adantl 482 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0)
2320, 22eqtrd 2656 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0)
245, 8, 10, 12, 13, 15, 17, 23isgrpd 17444 . 2 (0 ∈ ℂ → 𝑊 ∈ Grp)
254a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘𝑊))
267a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g𝑊))
272cnlmodlem3 22938 . . . . 5 (Scalar‘𝑊) = ℂfld
2827eqcomi 2631 . . . 4 fld = (Scalar‘𝑊)
2928a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊))
302cnlmod4 22939 . . . . 5 ( ·𝑠𝑊) = ·
3130eqcomi 2631 . . . 4 · = ( ·𝑠𝑊)
3231a1i 11 . . 3 (𝑊 ∈ Grp → · = ( ·𝑠𝑊))
33 cnfldbas 19750 . . . 4 ℂ = (Base‘ℂfld)
3433a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘ℂfld))
35 cnfldadd 19751 . . . 4 + = (+g‘ℂfld)
3635a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g‘ℂfld))
37 cnfldmul 19752 . . . 4 · = (.r‘ℂfld)
3837a1i 11 . . 3 (𝑊 ∈ Grp → · = (.r‘ℂfld))
39 cnfld1 19771 . . . 4 1 = (1r‘ℂfld)
4039a1i 11 . . 3 (𝑊 ∈ Grp → 1 = (1r‘ℂfld))
41 cnring 19768 . . . 4 fld ∈ Ring
4241a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld ∈ Ring)
43 id 22 . . 3 (𝑊 ∈ Grp → 𝑊 ∈ Grp)
44 mulcl 10020 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
45443adant1 1079 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
46 adddi 10025 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4746adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
48 adddir 10031 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4948adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
50 mulass 10024 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5150adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
52 mulid2 10038 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
5352adantl 482 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
5425, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53islmodd 18869 . 2 (𝑊 ∈ Grp → 𝑊 ∈ LMod)
551, 24, 54mp2b 10 1 𝑊 ∈ LMod
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  {cpr 4179  cop 4183  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Grpcgrp 17422  1rcur 18501  Ringcrg 18547  LModclmod 18863  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-lmod 18865  df-cnfld 19747
This theorem is referenced by:  cnstrcvs  22941
  Copyright terms: Public domain W3C validator