MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Structured version   Visualization version   GIF version

Theorem dprdcntz2 18437
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprdcntz2.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdcntz2 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdcntz2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dprdcntz2.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
3 dprdcntz2.c . . . 4 (𝜑𝐶𝐼)
41, 2, 3dprdres 18427 . . 3 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
54simpld 475 . 2 (𝜑𝐺dom DProd (𝑆𝐶))
6 dmres 5419 . . 3 dom (𝑆𝐶) = (𝐶 ∩ dom 𝑆)
73, 2sseqtr4d 3642 . . . 4 (𝜑𝐶 ⊆ dom 𝑆)
8 df-ss 3588 . . . 4 (𝐶 ⊆ dom 𝑆 ↔ (𝐶 ∩ dom 𝑆) = 𝐶)
97, 8sylib 208 . . 3 (𝜑 → (𝐶 ∩ dom 𝑆) = 𝐶)
106, 9syl5eq 2668 . 2 (𝜑 → dom (𝑆𝐶) = 𝐶)
11 dprdgrp 18404 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
121, 11syl 17 . . 3 (𝜑𝐺 ∈ Grp)
13 eqid 2622 . . . 4 (Base‘𝐺) = (Base‘𝐺)
1413dprdssv 18415 . . 3 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
15 dprdcntz2.z . . . 4 𝑍 = (Cntz‘𝐺)
1613, 15cntzsubg 17769 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
1712, 14, 16sylancl 694 . 2 (𝜑 → (𝑍‘(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
18 fvres 6207 . . . 4 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
1918adantl 482 . . 3 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
20 dprdcntz2.d . . . . . . . 8 (𝜑𝐷𝐼)
211, 2, 20dprdres 18427 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
2221simpld 475 . . . . . 6 (𝜑𝐺dom DProd (𝑆𝐷))
2322adantr 481 . . . . 5 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐷))
24 dprdsubg 18423 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
2523, 24syl 17 . . . 4 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
263sselda 3603 . . . . 5 ((𝜑𝑥𝐶) → 𝑥𝐼)
271, 2dprdf2 18406 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
2827ffvelrnda 6359 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
2926, 28syldan 487 . . . 4 ((𝜑𝑥𝐶) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
30 dmres 5419 . . . . . . 7 dom (𝑆𝐷) = (𝐷 ∩ dom 𝑆)
3120, 2sseqtr4d 3642 . . . . . . . 8 (𝜑𝐷 ⊆ dom 𝑆)
32 df-ss 3588 . . . . . . . 8 (𝐷 ⊆ dom 𝑆 ↔ (𝐷 ∩ dom 𝑆) = 𝐷)
3331, 32sylib 208 . . . . . . 7 (𝜑 → (𝐷 ∩ dom 𝑆) = 𝐷)
3430, 33syl5eq 2668 . . . . . 6 (𝜑 → dom (𝑆𝐷) = 𝐷)
3534adantr 481 . . . . 5 ((𝜑𝑥𝐶) → dom (𝑆𝐷) = 𝐷)
3612adantr 481 . . . . . 6 ((𝜑𝑥𝐶) → 𝐺 ∈ Grp)
3713subgss 17595 . . . . . . 7 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ (Base‘𝐺))
3829, 37syl 17 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (Base‘𝐺))
3913, 15cntzsubg 17769 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝑥) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑥)) ∈ (SubGrp‘𝐺))
4036, 38, 39syl2anc 693 . . . . 5 ((𝜑𝑥𝐶) → (𝑍‘(𝑆𝑥)) ∈ (SubGrp‘𝐺))
41 fvres 6207 . . . . . . 7 (𝑦𝐷 → ((𝑆𝐷)‘𝑦) = (𝑆𝑦))
4241adantl 482 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((𝑆𝐷)‘𝑦) = (𝑆𝑦))
431ad2antrr 762 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝐺dom DProd 𝑆)
442ad2antrr 762 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → dom 𝑆 = 𝐼)
4520adantr 481 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐷𝐼)
4645sselda 3603 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐼)
4726adantr 481 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑥𝐼)
48 simpr 477 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐷)
49 noel 3919 . . . . . . . . . . . 12 ¬ 𝑥 ∈ ∅
50 elin 3796 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
51 dprdcntz2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐷) = ∅)
5251eleq2d 2687 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶𝐷) ↔ 𝑥 ∈ ∅))
5350, 52syl5bbr 274 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐶𝑥𝐷) ↔ 𝑥 ∈ ∅))
5449, 53mtbiri 317 . . . . . . . . . . 11 (𝜑 → ¬ (𝑥𝐶𝑥𝐷))
55 imnan 438 . . . . . . . . . . 11 ((𝑥𝐶 → ¬ 𝑥𝐷) ↔ ¬ (𝑥𝐶𝑥𝐷))
5654, 55sylibr 224 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 → ¬ 𝑥𝐷))
5756imp 445 . . . . . . . . 9 ((𝜑𝑥𝐶) → ¬ 𝑥𝐷)
5857adantr 481 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ¬ 𝑥𝐷)
59 nelne2 2891 . . . . . . . 8 ((𝑦𝐷 ∧ ¬ 𝑥𝐷) → 𝑦𝑥)
6048, 58, 59syl2anc 693 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝑥)
6143, 44, 46, 47, 60, 15dprdcntz 18407 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑥)))
6242, 61eqsstrd 3639 . . . . 5 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((𝑆𝐷)‘𝑦) ⊆ (𝑍‘(𝑆𝑥)))
6323, 35, 40, 62dprdlub 18425 . . . 4 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝑆𝑥)))
6415, 25, 29, 63cntzrecd 18091 . . 3 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
6519, 64eqsstrd 3639 . 2 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
665, 10, 17, 65dprdlub 18425 1 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915   class class class wbr 4653  dom cdm 5114  cres 5116  cfv 5888  (class class class)co 6650  Basecbs 15857  Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprd2da  18441  dmdprdsplit  18446  ablfac1eulem  18471  ablfac1eu  18472
  Copyright terms: Public domain W3C validator