MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshweqrep Structured version   Visualization version   GIF version

Theorem cshweqrep 13567
Description: If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshweqrep ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
Distinct variable groups:   𝑗,𝐼   𝑗,𝐿   𝑗,𝑉   𝑗,𝑊

Proof of Theorem cshweqrep
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 · 𝐿) = (0 · 𝐿))
21oveq2d 6666 . . . . . . . . 9 (𝑥 = 0 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (0 · 𝐿)))
32oveq1d 6665 . . . . . . . 8 (𝑥 = 0 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))
43fveq2d 6195 . . . . . . 7 (𝑥 = 0 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))
54eqeq2d 2632 . . . . . 6 (𝑥 = 0 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))))
65imbi2d 330 . . . . 5 (𝑥 = 0 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))))
7 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 · 𝐿) = (𝑦 · 𝐿))
87oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (𝑦 · 𝐿)))
98oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))
109fveq2d 6195 . . . . . . 7 (𝑥 = 𝑦 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
1110eqeq2d 2632 . . . . . 6 (𝑥 = 𝑦 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))))
1211imbi2d 330 . . . . 5 (𝑥 = 𝑦 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))))
13 oveq1 6657 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐿) = ((𝑦 + 1) · 𝐿))
1413oveq2d 6666 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + ((𝑦 + 1) · 𝐿)))
1514oveq1d 6665 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
1615fveq2d 6195 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
1716eqeq2d 2632 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
1817imbi2d 330 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
19 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑗 → (𝑥 · 𝐿) = (𝑗 · 𝐿))
2019oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝑗 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (𝑗 · 𝐿)))
2120oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑗 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))
2221fveq2d 6195 . . . . . . 7 (𝑥 = 𝑗 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))
2322eqeq2d 2632 . . . . . 6 (𝑥 = 𝑗 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
2423imbi2d 330 . . . . 5 (𝑥 = 𝑗 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))))
25 zcn 11382 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
2625mul02d 10234 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → (0 · 𝐿) = 0)
2726adantl 482 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (0 · 𝐿) = 0)
2827adantr 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (0 · 𝐿) = 0)
2928oveq2d 6666 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + (0 · 𝐿)) = (𝐼 + 0))
30 elfzoelz 12470 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(#‘𝑊)) → 𝐼 ∈ ℤ)
3130zcnd 11483 . . . . . . . . . . 11 (𝐼 ∈ (0..^(#‘𝑊)) → 𝐼 ∈ ℂ)
3231addid1d 10236 . . . . . . . . . 10 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐼 + 0) = 𝐼)
3332ad2antll 765 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + 0) = 𝐼)
3429, 33eqtrd 2656 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + (0 · 𝐿)) = 𝐼)
3534oveq1d 6665 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)) = (𝐼 mod (#‘𝑊)))
36 zmodidfzoimp 12700 . . . . . . . 8 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐼 mod (#‘𝑊)) = 𝐼)
3736ad2antll 765 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 mod (#‘𝑊)) = 𝐼)
3835, 37eqtr2d 2657 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → 𝐼 = ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))
3938fveq2d 6195 . . . . 5 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))
40 fveq1 6190 . . . . . . . . . . . . 13 (𝑊 = (𝑊 cyclShift 𝐿) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4140eqcoms 2630 . . . . . . . . . . . 12 ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4241ad2antrl 764 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4342adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
44 simprll 802 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → 𝑊 ∈ Word 𝑉)
45 simprlr 803 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → 𝐿 ∈ ℤ)
46 elfzo0 12508 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (0..^(#‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)))
47 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → 𝐼 ∈ ℤ)
49 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
50 zmulcl 11426 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑦 · 𝐿) ∈ ℤ)
5149, 50sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ0𝐿 ∈ ℤ) → (𝑦 · 𝐿) ∈ ℤ)
5251ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝐿) ∈ ℤ)
53 zaddcl 11417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℤ ∧ (𝑦 · 𝐿) ∈ ℤ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℤ)
5448, 52, 53syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℤ)
55 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → (#‘𝑊) ∈ ℕ)
5654, 55jca 554 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
5756ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
58573adant3 1081 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
5946, 58sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6059adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6160expd 452 . . . . . . . . . . . . . . . 16 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝐿 ∈ ℤ → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6261com12 32 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℤ → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6362adantl 482 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6463imp 445 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6564impcom 446 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
66 zmodfzo 12693 . . . . . . . . . . . 12 (((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
6765, 66syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
68 cshwidxmod 13549 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ ∧ ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))))
6944, 45, 67, 68syl3anc 1326 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))))
70 nn0re 11301 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
71 zre 11381 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
72 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
73 nnrp 11842 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑊) ∈ ℕ → (#‘𝑊) ∈ ℝ+)
74 remulcl 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℝ)
7574ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℝ)
76 readdcl 10019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ ℝ ∧ (𝑦 · 𝐿) ∈ ℝ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7775, 76sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7877ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7978adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
80 simprll 802 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → 𝐿 ∈ ℝ)
81 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (#‘𝑊) ∈ ℝ+)
82 modaddmod 12709 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐼 + (𝑦 · 𝐿)) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ+) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)))
8379, 80, 81, 82syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)))
84 recn 10026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐼 ∈ ℝ → 𝐼 ∈ ℂ)
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → 𝐼 ∈ ℂ)
8674recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
8786ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
8887adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
89 recn 10026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
9089adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐿 ∈ ℂ)
9190adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → 𝐿 ∈ ℂ)
9285, 88, 91addassd 10062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 · 𝐿) + 𝐿)))
93 recn 10026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
95 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
9694, 95, 90adddird 10065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) · 𝐿) = ((𝑦 · 𝐿) + (1 · 𝐿)))
9789mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐿 ∈ ℝ → (1 · 𝐿) = 𝐿)
9897adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝐿) = 𝐿)
9998oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 · 𝐿) + (1 · 𝐿)) = ((𝑦 · 𝐿) + 𝐿))
10096, 99eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 · 𝐿) + 𝐿) = ((𝑦 + 1) · 𝐿))
101100adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝑦 · 𝐿) + 𝐿) = ((𝑦 + 1) · 𝐿))
102101oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝐼 + ((𝑦 · 𝐿) + 𝐿)) = (𝐼 + ((𝑦 + 1) · 𝐿)))
10392, 102eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 + 1) · 𝐿)))
104103adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 + 1) · 𝐿)))
105104oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
10683, 105eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
107106ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑊) ∈ ℝ+ → (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
10873, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑊) ∈ ℕ → (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
109108expd 452 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
110109com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((#‘𝑊) ∈ ℕ → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
11171, 72, 110syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((#‘𝑊) ∈ ℕ → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
112111com13 88 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℝ → ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
11370, 112syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
114113imp 445 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
1151143adant3 1081 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
11646, 115sylbi 207 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
117116expd 452 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐿 ∈ ℤ → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
118117adantld 483 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
119118adantl 482 . . . . . . . . . . . . 13 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
120119impcom 446 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
121120impcom 446 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
122121fveq2d 6195 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
12343, 69, 1223eqtrd 2660 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
124123eqeq2d 2632 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
125124biimpd 219 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
126125ex 450 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
127126a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))) → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
1286, 12, 18, 24, 39, 127nn0ind 11472 . . . 4 (𝑗 ∈ ℕ0 → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
129128com12 32 . . 3 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑗 ∈ ℕ0 → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
130129ralrimiv 2965 . 2 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))
131130ex 450 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cn 11020  0cn0 11292  cz 11377  +crp 11832  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshw1  13568  cshwsidrepsw  15800
  Copyright terms: Public domain W3C validator