MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   Unicode version

Theorem cshw1 13568
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1  |-  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
Distinct variable groups:    i, V    i, W

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4076 . . . 4  |-  A. i  e.  (/)  ( W `  i )  =  ( W `  0 )
2 oveq2 6658 . . . . . 6  |-  ( (
# `  W )  =  0  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 0 ) )
3 fzo0 12492 . . . . . 6  |-  ( 0..^ 0 )  =  (/)
42, 3syl6eq 2672 . . . . 5  |-  ( (
# `  W )  =  0  ->  (
0..^ ( # `  W
) )  =  (/) )
54raleqdv 3144 . . . 4  |-  ( (
# `  W )  =  0  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  <->  A. i  e.  (/)  ( W `  i )  =  ( W ` 
0 ) ) )
61, 5mpbiri 248 . . 3  |-  ( (
# `  W )  =  0  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
76a1d 25 . 2  |-  ( (
# `  W )  =  0  ->  (
( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
8 simprl 794 . . . . . . . 8  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  W  e. Word  V )
9 lencl 13324 . . . . . . . . . . 11  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
10 1nn0 11308 . . . . . . . . . . . . . 14  |-  1  e.  NN0
1110a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  1  e.  NN0 )
12 df-ne 2795 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =/=  0  <->  -.  ( # `  W
)  =  0 )
13 elnnne0 11306 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  e.  NN  <->  ( ( # `  W )  e.  NN0  /\  ( # `  W
)  =/=  0 ) )
1413simplbi2com 657 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =/=  0  ->  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  NN ) )
1512, 14sylbir 225 . . . . . . . . . . . . . . 15  |-  ( -.  ( # `  W
)  =  0  -> 
( ( # `  W
)  e.  NN0  ->  (
# `  W )  e.  NN ) )
1615adantr 481 . . . . . . . . . . . . . 14  |-  ( ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 )  ->  ( ( # `  W )  e.  NN0  ->  ( # `  W
)  e.  NN ) )
1716impcom 446 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  ( # `  W
)  e.  NN )
18 df-ne 2795 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =/=  1  <->  -.  ( # `  W
)  =  1 )
1918biimpri 218 . . . . . . . . . . . . . . 15  |-  ( -.  ( # `  W
)  =  1  -> 
( # `  W )  =/=  1 )
2019ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  ( # `  W
)  =/=  1 )
21 nngt1ne1 11047 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  e.  NN  ->  ( 1  <  ( # `  W
)  <->  ( # `  W
)  =/=  1 ) )
2217, 21syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  ( 1  <  ( # `  W
)  <->  ( # `  W
)  =/=  1 ) )
2320, 22mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  1  <  (
# `  W )
)
24 elfzo0 12508 . . . . . . . . . . . . 13  |-  ( 1  e.  ( 0..^ (
# `  W )
)  <->  ( 1  e. 
NN0  /\  ( # `  W
)  e.  NN  /\  1  <  ( # `  W
) ) )
2511, 17, 23, 24syl3anbrc 1246 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  e.  NN0  /\  ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 ) )  ->  1  e.  ( 0..^ ( # `  W
) ) )
2625ex 450 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  NN0  ->  ( ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 )  ->  1  e.  ( 0..^ ( # `  W
) ) ) )
279, 26syl 17 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  ->  1  e.  ( 0..^ ( # `  W
) ) ) )
2827adantr 481 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  (
( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  ->  1  e.  ( 0..^ ( # `  W
) ) ) )
2928impcom 446 . . . . . . . 8  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  1  e.  ( 0..^ ( # `  W ) ) )
30 simprr 796 . . . . . . . 8  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  ( W cyclShift  1 )  =  W )
31 lbfzo0 12507 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ( 0..^ (
# `  W )
)  <->  ( # `  W
)  e.  NN )
3231biimpri 218 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  e.  NN  ->  0  e.  ( 0..^ ( # `  W
) ) )
3313, 32sylbir 225 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  W
)  e.  NN0  /\  ( # `  W )  =/=  0 )  -> 
0  e.  ( 0..^ ( # `  W
) ) )
3433ex 450 . . . . . . . . . . . . . 14  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  =/=  0  ->  0  e.  ( 0..^ ( # `  W
) ) ) )
3512, 34syl5bir 233 . . . . . . . . . . . . 13  |-  ( (
# `  W )  e.  NN0  ->  ( -.  ( # `  W )  =  0  ->  0  e.  ( 0..^ ( # `  W ) ) ) )
369, 35syl 17 . . . . . . . . . . . 12  |-  ( W  e. Word  V  ->  ( -.  ( # `  W
)  =  0  -> 
0  e.  ( 0..^ ( # `  W
) ) ) )
3736adantr 481 . . . . . . . . . . 11  |-  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  ( -.  ( # `  W
)  =  0  -> 
0  e.  ( 0..^ ( # `  W
) ) ) )
3837com12 32 . . . . . . . . . 10  |-  ( -.  ( # `  W
)  =  0  -> 
( ( W  e. Word  V  /\  ( W cyclShift  1
)  =  W )  ->  0  e.  ( 0..^ ( # `  W
) ) ) )
3938adantr 481 . . . . . . . . 9  |-  ( ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 )  ->  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  0  e.  ( 0..^ ( # `  W
) ) ) )
4039imp 445 . . . . . . . 8  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  0  e.  ( 0..^ ( # `  W ) ) )
41 elfzoelz 12470 . . . . . . . . . 10  |-  ( 1  e.  ( 0..^ (
# `  W )
)  ->  1  e.  ZZ )
42 cshweqrep 13567 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  1  e.  ZZ )  ->  ( ( ( W cyclShift  1 )  =  W  /\  0  e.  ( 0..^ ( # `  W
) ) )  ->  A. i  e.  NN0  ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) ) ) )
4341, 42sylan2 491 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  1  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( ( W cyclShift  1 )  =  W  /\  0  e.  ( 0..^ ( # `  W
) ) )  ->  A. i  e.  NN0  ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) ) ) )
4443imp 445 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  1  e.  (
0..^ ( # `  W
) ) )  /\  ( ( W cyclShift  1
)  =  W  /\  0  e.  ( 0..^ ( # `  W
) ) ) )  ->  A. i  e.  NN0  ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) ) )
458, 29, 30, 40, 44syl22anc 1327 . . . . . . 7  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  A. i  e.  NN0  ( W ` 
0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `  W
) ) ) )
46 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
47 fzossnn0 12499 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0..^ ( # `  W
) )  C_  NN0 )
48 ssralv 3666 . . . . . . . . 9  |-  ( ( 0..^ ( # `  W
) )  C_  NN0  ->  ( A. i  e.  NN0  ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) ) ) )
4946, 47, 48mp2b 10 . . . . . . . 8  |-  ( A. i  e.  NN0  ( W `
 0 )  =  ( W `  (
( 0  +  ( i  x.  1 ) )  mod  ( # `  W ) ) )  ->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 0 )  =  ( W `  (
( 0  +  ( i  x.  1 ) )  mod  ( # `  W ) ) ) )
50 eqcom 2629 . . . . . . . . . 10  |-  ( ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) )  <->  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) )  =  ( W `
 0 ) )
51 elfzoelz 12470 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  i  e.  ZZ )
52 zre 11381 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ZZ  ->  i  e.  RR )
53 ax-1rid 10006 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  RR  ->  (
i  x.  1 )  =  i )
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ZZ  ->  (
i  x.  1 )  =  i )
5554oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ZZ  ->  (
0  +  ( i  x.  1 ) )  =  ( 0  +  i ) )
56 zcn 11382 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ZZ  ->  i  e.  CC )
5756addid2d 10237 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ZZ  ->  (
0  +  i )  =  i )
5855, 57eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ZZ  ->  (
0  +  ( i  x.  1 ) )  =  i )
5951, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( 0  +  ( i  x.  1 ) )  =  i )
6059oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( (
0  +  ( i  x.  1 ) )  mod  ( # `  W
) )  =  ( i  mod  ( # `  W ) ) )
61 zmodidfzoimp 12700 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( i  mod  ( # `  W
) )  =  i )
6260, 61eqtrd 2656 . . . . . . . . . . . . 13  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( (
0  +  ( i  x.  1 ) )  mod  ( # `  W
) )  =  i )
6362fveq2d 6195 . . . . . . . . . . . 12  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) )  =  ( W `
 i ) )
6463eqeq1d 2624 . . . . . . . . . . 11  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( ( W `  ( (
0  +  ( i  x.  1 ) )  mod  ( # `  W
) ) )  =  ( W `  0
)  <->  ( W `  i )  =  ( W `  0 ) ) )
6564biimpd 219 . . . . . . . . . 10  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( ( W `  ( (
0  +  ( i  x.  1 ) )  mod  ( # `  W
) ) )  =  ( W `  0
)  ->  ( W `  i )  =  ( W `  0 ) ) )
6650, 65syl5bi 232 . . . . . . . . 9  |-  ( i  e.  ( 0..^ (
# `  W )
)  ->  ( ( W `  0 )  =  ( W `  ( ( 0  +  ( i  x.  1 ) )  mod  ( # `
 W ) ) )  ->  ( W `  i )  =  ( W `  0 ) ) )
6766ralimia 2950 . . . . . . . 8  |-  ( A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 0 )  =  ( W `  (
( 0  +  ( i  x.  1 ) )  mod  ( # `  W ) ) )  ->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) )
6849, 67syl 17 . . . . . . 7  |-  ( A. i  e.  NN0  ( W `
 0 )  =  ( W `  (
( 0  +  ( i  x.  1 ) )  mod  ( # `  W ) ) )  ->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) )
6945, 68syl 17 . . . . . 6  |-  ( ( ( -.  ( # `  W )  =  0  /\  -.  ( # `  W )  =  1 )  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
7069ex 450 . . . . 5  |-  ( ( -.  ( # `  W
)  =  0  /\ 
-.  ( # `  W
)  =  1 )  ->  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) ) )
7170impancom 456 . . . 4  |-  ( ( -.  ( # `  W
)  =  0  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  ( -.  ( # `
 W )  =  1  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) ) )
72 eqid 2622 . . . . . 6  |-  ( W `
 0 )  =  ( W `  0
)
73 c0ex 10034 . . . . . . 7  |-  0  e.  _V
74 fveq2 6191 . . . . . . . 8  |-  ( i  =  0  ->  ( W `  i )  =  ( W ` 
0 ) )
7574eqeq1d 2624 . . . . . . 7  |-  ( i  =  0  ->  (
( W `  i
)  =  ( W `
 0 )  <->  ( W `  0 )  =  ( W `  0
) ) )
7673, 75ralsn 4222 . . . . . 6  |-  ( A. i  e.  { 0 }  ( W `  i )  =  ( W `  0 )  <-> 
( W `  0
)  =  ( W `
 0 ) )
7772, 76mpbir 221 . . . . 5  |-  A. i  e.  { 0 }  ( W `  i )  =  ( W ` 
0 )
78 oveq2 6658 . . . . . . 7  |-  ( (
# `  W )  =  1  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 1 ) )
79 fzo01 12550 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
8078, 79syl6eq 2672 . . . . . 6  |-  ( (
# `  W )  =  1  ->  (
0..^ ( # `  W
) )  =  {
0 } )
8180raleqdv 3144 . . . . 5  |-  ( (
# `  W )  =  1  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  <->  A. i  e.  {
0 }  ( W `
 i )  =  ( W `  0
) ) )
8277, 81mpbiri 248 . . . 4  |-  ( (
# `  W )  =  1  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
8371, 82pm2.61d2 172 . . 3  |-  ( ( -.  ( # `  W
)  =  0  /\  ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W ) )  ->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) )
8483ex 450 . 2  |-  ( -.  ( # `  W
)  =  0  -> 
( ( W  e. Word  V  /\  ( W cyclShift  1
)  =  W )  ->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
857, 84pm2.61i 176 1  |-  ( ( W  e. Word  V  /\  ( W cyclShift  1 )  =  W )  ->  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshw1repsw  13569
  Copyright terms: Public domain W3C validator