Proof of Theorem dihord2pre2
| Step | Hyp | Ref
| Expression |
| 1 | | dihjust.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | dihjust.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 3 | | dihjust.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 4 | | dihjust.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 5 | | dihjust.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | dihjust.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | dihjust.i |
. . 3
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| 8 | | dihjust.J |
. . 3
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| 9 | | dihjust.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 10 | | dihjust.s |
. . 3
⊢ ⊕ =
(LSSum‘𝑈) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dihord2a 36508 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
| 12 | | simp11l 1172 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝐾 ∈ HL) |
| 13 | | hllat 34650 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 14 | 12, 13 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝐾 ∈ Lat) |
| 15 | | simp2l 1087 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑋 ∈ 𝐵) |
| 16 | | simp11r 1173 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑊 ∈ 𝐻) |
| 17 | 1, 6 | lhpbase 35284 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 18 | 16, 17 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑊 ∈ 𝐵) |
| 19 | 1, 4 | latmcl 17052 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 20 | 14, 15, 18, 19 | syl3anc 1326 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 21 | | simp2r 1088 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑌 ∈ 𝐵) |
| 22 | 1, 4 | latmcl 17052 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 23 | 14, 21, 18, 22 | syl3anc 1326 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 24 | | simp13l 1176 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑁 ∈ 𝐴) |
| 25 | 1, 5 | atbase 34576 |
. . . . 5
⊢ (𝑁 ∈ 𝐴 → 𝑁 ∈ 𝐵) |
| 26 | 24, 25 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑁 ∈ 𝐵) |
| 27 | 1, 3 | latjcl 17051 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
| 28 | 14, 26, 23, 27 | syl3anc 1326 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
| 29 | | simp33 1099 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
| 30 | | dihord2c.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 31 | | dihord2c.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 32 | | dihord2c.o |
. . . . 5
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 33 | | dihord2.p |
. . . . 5
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 34 | | dihord2.e |
. . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 35 | | dihord2.d |
. . . . 5
⊢ + =
(+g‘𝑈) |
| 36 | | dihord2.g |
. . . . 5
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| 37 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
30, 31, 32, 33, 34, 35, 36 | dihord2pre 36514 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
| 38 | 29, 37 | syld3an3 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
| 39 | 1, 2, 3 | latlej2 17061 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
| 40 | 14, 26, 23, 39 | syl3anc 1326 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
| 41 | 1, 2, 14, 20, 23, 28, 38, 40 | lattrd 17058 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
| 42 | | simp12l 1174 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ∈ 𝐴) |
| 43 | 1, 5 | atbase 34576 |
. . . 4
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 44 | 42, 43 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ∈ 𝐵) |
| 45 | 1, 2, 3 | latjle12 17062 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵)) → ((𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) ↔ (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
| 46 | 14, 44, 20, 28, 45 | syl13anc 1328 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → ((𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) ↔ (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
| 47 | 11, 41, 46 | mpbi2and 956 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |