| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochlkr | Structured version Visualization version GIF version | ||
| Description: Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
| Ref | Expression |
|---|---|
| dochlkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochlkr.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochlkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochlkr.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| dochlkr.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
| dochlkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
| dochlkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochlkr.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| dochlkr | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochlkr.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | eqid 2622 | . . . . . . . . 9 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 3 | dochlkr.f | . . . . . . . . 9 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 4 | dochlkr.l | . . . . . . . . 9 ⊢ 𝐿 = (LKer‘𝑈) | |
| 5 | dochlkr.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dochlkr.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | 5, 6, 1 | dvhlmod 36399 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | dochlkr.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 9 | 2, 3, 4, 7, 8 | lkrssv 34383 | . . . . . . . 8 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (Base‘𝑈)) |
| 10 | dochlkr.o | . . . . . . . . 9 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 11 | 5, 6, 2, 10 | dochocss 36655 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ (Base‘𝑈)) → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 12 | 1, 9, 11 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 14 | dochlkr.y | . . . . . . 7 ⊢ 𝑌 = (LSHyp‘𝑈) | |
| 15 | 5, 6, 1 | dvhlvec 36398 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LVec) |
| 17 | 7 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
| 18 | simpr 477 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
| 19 | 2, 14, 17, 18 | lshpne 34269 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈)) |
| 20 | 19 | ex 450 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈))) |
| 21 | 2, 14, 3, 4, 15, 8 | lkrshpor 34394 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = (Base‘𝑈))) |
| 22 | 21 | ord 392 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) ∈ 𝑌 → (𝐿‘𝐺) = (Base‘𝑈))) |
| 23 | fveq2 6191 | . . . . . . . . . . . . . . 15 ⊢ ((𝐿‘𝐺) = (Base‘𝑈) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘(Base‘𝑈))) | |
| 24 | 23 | fveq2d 6195 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = (Base‘𝑈) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
| 25 | 24 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
| 26 | 1 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 27 | 5, 6, 10, 2, 26 | dochoc1 36650 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
| 28 | 25, 27 | eqtrd 2656 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈)) |
| 29 | 28 | ex 450 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = (Base‘𝑈) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈))) |
| 30 | 22, 29 | syld 47 | . . . . . . . . . 10 ⊢ (𝜑 → (¬ (𝐿‘𝐺) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈))) |
| 31 | 30 | necon1ad 2811 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈) → (𝐿‘𝐺) ∈ 𝑌)) |
| 32 | 20, 31 | syld 47 | . . . . . . . 8 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → (𝐿‘𝐺) ∈ 𝑌)) |
| 33 | 32 | imp 445 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) ∈ 𝑌) |
| 34 | 14, 16, 33, 18 | lshpcmp 34275 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ((𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ↔ (𝐿‘𝐺) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))))) |
| 35 | 13, 34 | mpbid 222 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 36 | 35 | eqcomd 2628 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 37 | 36, 33 | jca 554 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌)) |
| 38 | 37 | ex 450 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
| 39 | eleq1 2689 | . . 3 ⊢ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (𝐿‘𝐺) ∈ 𝑌)) | |
| 40 | 39 | biimpar 502 | . 2 ⊢ ((( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) |
| 41 | 38, 40 | impbid1 215 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ‘cfv 5888 Basecbs 15857 LModclmod 18863 LVecclvec 19102 LSHypclsh 34262 LFnlclfn 34344 LKerclk 34372 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lfl 34345 df-lkr 34373 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring 36045 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 |
| This theorem is referenced by: dochkrshp 36675 dochkrshp2 36676 mapdordlem1a 36923 mapdordlem2 36926 |
| Copyright terms: Public domain | W3C validator |