![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochkrshp | Structured version Visualization version GIF version |
Description: The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
Ref | Expression |
---|---|
dochkrshp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochkrshp.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochkrshp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochkrshp.v | ⊢ 𝑉 = (Base‘𝑈) |
dochkrshp.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
dochkrshp.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochkrshp.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochkrshp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochkrshp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
dochkrshp | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) | |
2 | dochkrshp.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochkrshp.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | dochkrshp.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dochkrshp.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
6 | dochkrshp.y | . . . . . . . 8 ⊢ 𝑌 = (LSHyp‘𝑈) | |
7 | dochkrshp.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | fveq2 6191 | . . . . . . . . . . . . . . 15 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) | |
10 | 9 | fveq2d 6195 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
11 | 2, 4, 3, 5, 7 | dochoc1 36650 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
12 | 10, 11 | sylan9eqr 2678 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
13 | simpr 477 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
14 | 12, 13 | eqtr4d 2659 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
15 | 14 | ex 450 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
16 | 15 | necon3d 2815 | . . . . . . . . . 10 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ≠ 𝑉)) |
17 | df-ne 2795 | . . . . . . . . . . 11 ⊢ ((𝐿‘𝐺) ≠ 𝑉 ↔ ¬ (𝐿‘𝐺) = 𝑉) | |
18 | dochkrshp.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (LFnl‘𝑈) | |
19 | dochkrshp.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (LKer‘𝑈) | |
20 | 2, 4, 7 | dvhlvec 36398 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LVec) |
21 | dochkrshp.g | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
22 | 5, 6, 18, 19, 20, 21 | lkrshpor 34394 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉)) |
23 | 22 | orcomd 403 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ∨ (𝐿‘𝐺) ∈ 𝑌)) |
24 | 23 | ord 392 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) = 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
25 | 17, 24 | syl5bi 232 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
26 | 16, 25 | syld 47 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ∈ 𝑌)) |
27 | 26 | imp 445 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐿‘𝐺) ∈ 𝑌) |
28 | 2, 3, 4, 5, 6, 8, 27 | dochshpncl 36673 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
29 | 1, 28 | mpbid 222 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
30 | 29 | ex 450 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
31 | 30 | necon1d 2816 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
32 | 12 | ex 450 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
33 | 32 | necon3ad 2807 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ¬ (𝐿‘𝐺) = 𝑉)) |
34 | 33, 24 | syld 47 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
35 | 31, 34 | jcad 555 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
36 | 2, 3, 4, 18, 6, 19, 7, 21 | dochlkr 36674 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
37 | 35, 36 | sylibrd 249 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
38 | 2, 4, 7 | dvhlmod 36399 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
39 | 38 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
40 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
41 | 5, 6, 39, 40 | lshpne 34269 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
42 | 41 | ex 450 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
43 | 37, 42 | impbid 202 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 Basecbs 15857 LModclmod 18863 LSHypclsh 34262 LFnlclfn 34344 LKerclk 34372 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lfl 34345 df-lkr 34373 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring 36045 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 |
This theorem is referenced by: dochkrshp2 36676 dochkrsat 36744 |
Copyright terms: Public domain | W3C validator |