Step | Hyp | Ref
| Expression |
1 | | fvexd 6203 |
. 2
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
V) |
2 | | simpl 473 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ) |
4 | | simprl 794 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
5 | | eengbas 25861 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
6 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
7 | 4, 6 | eleqtrrd 2704 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
8 | 7 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁)) |
9 | | simprr 796 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
10 | 9, 6 | eleqtrrd 2704 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁)) |
12 | 4 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
13 | 9 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
14 | | simpr1 1067 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
15 | | simpr3 1069 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
16 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
17 | 15, 16 | eleqtrrd 2704 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁))
∧ 𝑧 ∈
(Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁)) |
18 | 3, 12, 13, 14, 17 | syl13anc 1328 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁)) |
19 | | simpr2 1068 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁))) |
20 | 5 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
21 | 19, 20 | eleqtrrd 2704 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁)) |
22 | | simpr3 1069 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁))) |
23 | 22, 20 | eleqtrrd 2704 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁)) |
24 | | axeuclid 25843 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn 〈𝑥, 𝑣〉 ∧ 𝑢 Btwn 〈𝑦, 𝑧〉 ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑎〉 ∧ 𝑧 Btwn 〈𝑥, 𝑏〉 ∧ 𝑣 Btwn 〈𝑎, 𝑏〉))) |
25 | 3, 8, 11, 18, 21, 23, 24 | syl132anc 1344 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn 〈𝑥, 𝑣〉 ∧ 𝑢 Btwn 〈𝑦, 𝑧〉 ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑎〉 ∧ 𝑧 Btwn 〈𝑥, 𝑏〉 ∧ 𝑣 Btwn 〈𝑎, 𝑏〉))) |
26 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁)) |
27 | | eqid 2622 |
. . . . . . 7
⊢
(Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁)) |
28 | 3, 26, 27, 12, 22, 19 | ebtwntg 25862 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn 〈𝑥, 𝑣〉 ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣))) |
29 | 3, 26, 27, 13, 14, 19 | ebtwntg 25862 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn 〈𝑦, 𝑧〉 ↔ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))) |
30 | 28, 29 | 3anbi12d 1400 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn 〈𝑥, 𝑣〉 ∧ 𝑢 Btwn 〈𝑦, 𝑧〉 ∧ 𝑥 ≠ 𝑢) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥 ≠ 𝑢))) |
31 | 20 | adantr 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
32 | 3 | ad2antrr 762 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
33 | 12 | ad2antrr 762 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁))) |
34 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁)) |
35 | 34, 31 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
36 | 35 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁))) |
37 | 13 | ad2antrr 762 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁))) |
38 | 32, 26, 27, 33, 36, 37 | ebtwntg 25862 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝑥, 𝑎〉 ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎))) |
39 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (𝔼‘𝑁)) |
40 | 20 | ad2antrr 762 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
41 | 39, 40 | eleqtrd 2703 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁))) |
42 | 14 | ad2antrr 762 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁))) |
43 | 32, 26, 27, 33, 41, 42 | ebtwntg 25862 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑧 Btwn 〈𝑥, 𝑏〉 ↔ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏))) |
44 | 22 | ad2antrr 762 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁))) |
45 | 32, 26, 27, 36, 41, 44 | ebtwntg 25862 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑣 Btwn 〈𝑎, 𝑏〉 ↔ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))) |
46 | 38, 43, 45 | 3anbi123d 1399 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn 〈𝑥, 𝑎〉 ∧ 𝑧 Btwn 〈𝑥, 𝑏〉 ∧ 𝑣 Btwn 〈𝑎, 𝑏〉) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
47 | 31, 46 | rexeqbidva 3155 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑎〉 ∧ 𝑧 Btwn 〈𝑥, 𝑏〉 ∧ 𝑣 Btwn 〈𝑎, 𝑏〉) ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
48 | 20, 47 | rexeqbidva 3155 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝑥, 𝑎〉 ∧ 𝑧 Btwn 〈𝑥, 𝑏〉 ∧ 𝑣 Btwn 〈𝑎, 𝑏〉) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
49 | 25, 30, 48 | 3imtr3d 282 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
50 | 49 | ralrimivvva 2972 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
(Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
51 | 50 | ralrimivva 2971 |
. 2
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
(Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))) |
52 | | eqid 2622 |
. . 3
⊢
(dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁)) |
53 | 26, 52, 27 | istrkge 25356 |
. 2
⊢
((EEG‘𝑁)
∈ TarskiGE ↔ ((EEG‘𝑁) ∈ V ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))) |
54 | 1, 51, 53 | sylanbrc 698 |
1
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
TarskiGE) |