MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkg Structured version   Visualization version   GIF version

Theorem eengtrkg 25865
Description: The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkg (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)

Proof of Theorem eengtrkg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑖 𝑝 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . . . . . 6 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
2 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
3 simprl 794 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
4 eengbas 25861 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
54adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
63, 5eleqtrrd 2704 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
7 simprr 796 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
87, 5eleqtrrd 2704 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
9 axcgrrflx 25794 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
102, 6, 8, 9syl3anc 1326 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩)
11 eqid 2622 . . . . . . . . 9 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
12 eqid 2622 . . . . . . . . 9 (dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁))
132, 11, 12, 3, 7, 7, 3ecgrtg 25863 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑦, 𝑥⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥)))
1410, 13mpbid 222 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
1514ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥))
16 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
17 simpr1 1067 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
18 simpr2 1068 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
19 simpr3 1069 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
2016, 11, 12, 17, 18, 19, 19ecgrtg 25863 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧)))
2163adantr3 1222 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
2283adantr3 1222 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
234adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
2419, 23eleqtrrd 2704 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
25 axcgrid 25796 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2616, 21, 22, 24, 25syl13anc 1328 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑧, 𝑧⟩ → 𝑥 = 𝑦))
2720, 26sylbird 250 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
2827ralrimivvva 2972 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))
291, 15, 28jca32 558 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
30 eqid 2622 . . . . . 6 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
3111, 12, 30istrkgc 25353 . . . . 5 ((EEG‘𝑁) ∈ TarskiGC ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑦(dist‘(EEG‘𝑁))𝑥) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑧(dist‘(EEG‘𝑁))𝑧) → 𝑥 = 𝑦))))
3229, 31sylibr 224 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGC)
332, 11, 30, 3, 3, 7ebtwntg 25862 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)))
34 axbtwnid 25819 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
352, 8, 6, 34syl3anc 1326 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑥⟩ → 𝑦 = 𝑥))
3633, 35sylbird 250 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑦 = 𝑥))
3736imp 445 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑦 = 𝑥)
3837eqcomd 2628 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥)) → 𝑥 = 𝑦)
3938ex 450 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
4039ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦))
41 simpll 790 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
426adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
438adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
443adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
457adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
46 simpr1 1067 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
4741, 44, 45, 46, 24syl13anc 1328 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
48 simpr2 1068 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
4941, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5048, 49eleqtrrd 2704 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
51 simpr3 1069 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
5251, 49eleqtrrd 2704 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
53 axpasch 25821 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5441, 42, 43, 47, 50, 52, 53syl132anc 1344 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩)))
5541, 11, 30, 44, 46, 48ebtwntg 25862 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
5641, 11, 30, 45, 46, 51ebtwntg 25862 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑣 Btwn ⟨𝑦, 𝑧⟩ ↔ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))
5755, 56anbi12d 747 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑣 Btwn ⟨𝑦, 𝑧⟩) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧))))
58 simplll 798 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
5948adantr 481 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
6045adantr 481 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
61 simpr 477 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
6249adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
6361, 62eleqtrd 2703 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
6458, 11, 30, 59, 60, 63ebtwntg 25862 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑢, 𝑦⟩ ↔ 𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦)))
6551adantr 481 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
6644adantr 481 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
6758, 11, 30, 65, 66, 63ebtwntg 25862 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝑎 Btwn ⟨𝑣, 𝑥⟩ ↔ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥)))
6864, 67anbi12d 747 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ (𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
6949, 68rexeqbidva 3155 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑎 Btwn ⟨𝑢, 𝑦⟩ ∧ 𝑎 Btwn ⟨𝑣, 𝑥⟩) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7054, 57, 693imtr3d 282 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7170ralrimivvva 2972 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
7271ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))))
73 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
74 elpwi 4168 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
7574ad2antrl 764 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
764adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
7775, 76sseqtr4d 3642 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑠 ⊆ (𝔼‘𝑁))
78 elpwi 4168 . . . . . . . . . . 11 (𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
7978ad2antll 765 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
8079, 76sseqtr4d 3642 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → 𝑡 ⊆ (𝔼‘𝑁))
81 simpll 790 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑁 ∈ ℕ)
82 simplrl 800 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑠 ⊆ (𝔼‘𝑁))
83 simplrr 801 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → 𝑡 ⊆ (𝔼‘𝑁))
84 simpr 477 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)
85 axcont 25856 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8681, 82, 83, 84, 85syl13anc 1328 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩)
8786ex 450 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑠 ⊆ (𝔼‘𝑁) ∧ 𝑡 ⊆ (𝔼‘𝑁))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
8873, 77, 80, 87syl12anc 1324 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩))
89 simplll 798 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
90 simplr 792 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (𝔼‘𝑁))
9176ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
9290, 91eleqtrd 2703 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
9379ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
94 simprr 796 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
9593, 94sseldd 3604 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
9675ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
97 simprl 794 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
9896, 97sseldd 3604 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
9989, 11, 30, 92, 95, 98ebtwntg 25862 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
100992ralbidva 2988 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
10176, 100rexeqbidva 3155 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑥 Btwn ⟨𝑎, 𝑦⟩ ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦)))
102 simplll 798 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑁 ∈ ℕ)
10375ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑠 ⊆ (Base‘(EEG‘𝑁)))
104 simprl 794 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥𝑠)
105103, 104sseldd 3604 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
10679ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑡 ⊆ (Base‘(EEG‘𝑁)))
107 simprr 796 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦𝑡)
108106, 107sseldd 3604 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
109 simplr 792 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (𝔼‘𝑁))
11076ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
111109, 110eleqtrd 2703 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
112102, 11, 30, 105, 108, 111ebtwntg 25862 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑥𝑠𝑦𝑡)) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
1131122ralbidva 2988 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11476, 113rexeqbidva 3155 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝑠𝑦𝑡 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11588, 101, 1143imtr3d 282 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁)) ∧ 𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
116115ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11740, 72, 1163jca 1242 . . . . 5 (𝑁 ∈ ℕ → (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))))
11811, 12, 30istrkgb 25354 . . . . 5 ((EEG‘𝑁) ∈ TarskiGB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑣 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))(𝑎 ∈ (𝑢(Itv‘(EEG‘𝑁))𝑦) ∧ 𝑎 ∈ (𝑣(Itv‘(EEG‘𝑁))𝑥))) ∧ ∀𝑠 ∈ 𝒫 (Base‘(EEG‘𝑁))∀𝑡 ∈ 𝒫 (Base‘(EEG‘𝑁))(∃𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑦) → ∃𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))))
1191, 117, 118sylanbrc 698 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGB)
12032, 119elind 3798 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGC ∩ TarskiGB))
121 simplll 798 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1223ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
123121, 4syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
124122, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1257ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
126125, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
127 simplr1 1103 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
128127, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
129 simplr2 1104 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
130129, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
131 simplr3 1105 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
132131, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
133 simpr1 1067 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
134133, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
135 simpr2 1068 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (Base‘(EEG‘𝑁)))
136135, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑐 ∈ (𝔼‘𝑁))
137 simpr3 1069 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
138137, 123eleqtrrd 2704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
139 3anass 1042 . . . . . . . . . . . 12 (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))))
140 ax5seg 25818 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
141139, 140syl5bir 233 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑧 ∈ (𝔼‘𝑁) ∧ 𝑢 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
142121, 124, 126, 128, 130, 132, 134, 136, 138, 141syl333anc 1358 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) → ⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩))
143121, 11, 30, 122, 127, 125ebtwntg 25862 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
144121, 11, 30, 131, 135, 133ebtwntg 25862 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)))
145143, 1443anbi23d 1402 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ↔ (𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐))))
146121, 11, 12, 122, 125, 131, 133ecgrtg 25863 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
147121, 11, 12, 125, 127, 133, 135ecgrtg 25863 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)))
148146, 147anbi12d 747 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐))))
149121, 11, 12, 122, 129, 131, 137ecgrtg 25863 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ↔ (𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣)))
150121, 11, 12, 125, 129, 133, 137ecgrtg 25863 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))
151149, 150anbi12d 747 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩) ↔ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))
152148, 151anbi12d 747 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩)) ↔ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))))
153145, 152anbi12d 747 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ 𝑏 Btwn ⟨𝑎, 𝑐⟩) ∧ ((⟨𝑥, 𝑦⟩Cgr⟨𝑎, 𝑏⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑏, 𝑐⟩) ∧ (⟨𝑥, 𝑢⟩Cgr⟨𝑎, 𝑣⟩ ∧ ⟨𝑦, 𝑢⟩Cgr⟨𝑏, 𝑣⟩))) ↔ ((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣))))))
154121, 11, 12, 127, 129, 135, 137ecgrtg 25863 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (⟨𝑧, 𝑢⟩Cgr⟨𝑐, 𝑣⟩ ↔ (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
155142, 153, 1543imtr3d 282 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑏 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑐 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
156155ralrimivvva 2972 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑎 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
157156ralrimivvva 2972 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
158157ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)))
159 simpll 790 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
1606adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
1618adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
162 simprl 794 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
163159, 4syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
164162, 163eleqtrrd 2704 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑎 ∈ (𝔼‘𝑁))
165 simprr 796 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
166165, 163eleqtrrd 2704 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → 𝑏 ∈ (𝔼‘𝑁))
167 axsegcon 25807 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
168159, 160, 161, 164, 166, 167syl122anc 1335 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩))
169 simplll 798 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
1703ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
171 simpr 477 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
172163adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
173171, 172eleqtrd 2703 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
1747ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
175169, 11, 30, 170, 173, 174ebtwntg 25862 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧)))
176 simplrl 800 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
177 simplrr 801 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
178169, 11, 12, 174, 173, 176, 177ecgrtg 25863 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩ ↔ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
179175, 178anbi12d 747 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
180163, 179rexeqbidva 3155 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩Cgr⟨𝑎, 𝑏⟩) ↔ ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏))))
181168, 180mpbid 222 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑎 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑏 ∈ (Base‘(EEG‘𝑁)))) → ∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
182181ralrimivva 2971 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
183182ralrimivva 2971 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))
1841, 158, 183jca32 558 . . . . 5 (𝑁 ∈ ℕ → ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
18511, 12, 30istrkgcb 25355 . . . . 5 ((EEG‘𝑁) ∈ TarskiGCB ↔ ((EEG‘𝑁) ∈ V ∧ (∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∀𝑐 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))(((𝑥𝑦𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑏 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑐)) ∧ (((𝑥(dist‘(EEG‘𝑁))𝑦) = (𝑎(dist‘(EEG‘𝑁))𝑏) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑏(dist‘(EEG‘𝑁))𝑐)) ∧ ((𝑥(dist‘(EEG‘𝑁))𝑢) = (𝑎(dist‘(EEG‘𝑁))𝑣) ∧ (𝑦(dist‘(EEG‘𝑁))𝑢) = (𝑏(dist‘(EEG‘𝑁))𝑣)))) → (𝑧(dist‘(EEG‘𝑁))𝑢) = (𝑐(dist‘(EEG‘𝑁))𝑣)) ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑎 ∈ (Base‘(EEG‘𝑁))∀𝑏 ∈ (Base‘(EEG‘𝑁))∃𝑧 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧) ∧ (𝑦(dist‘(EEG‘𝑁))𝑧) = (𝑎(dist‘(EEG‘𝑁))𝑏)))))
186184, 185sylibr 224 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGCB)
18711, 30elntg 25864 . . . . 5 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))}))
18811, 12, 30istrkgl 25357 . . . . 5 ((EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ ((EEG‘𝑁) ∈ V ∧ (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑧 ∈ (Base‘(EEG‘𝑁)) ∣ (𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑧))})))
1891, 187, 188sylanbrc 698 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
190186, 189elind 3798 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
191120, 190elind 3798 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})))
192 df-trkg 25352 . 2 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
193191, 192syl6eleqr 2712 1 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  [wsbc 3435  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cmpt2 6652  cn 11020  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  TarskiGCcstrkgc 25330  TarskiGBcstrkgb 25331  TarskiGCBcstrkgcb 25332  Itvcitv 25335  LineGclng 25336  𝔼cee 25768   Btwn cbtwn 25769  Cgrccgr 25770  EEGceeng 25857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-ds 15964  df-itv 25337  df-lng 25338  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-ee 25771  df-btwn 25772  df-cgr 25773  df-eeng 25858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator