MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   Unicode version

Theorem efginvrel1 18141
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efginvrel1  |-  ( A  e.  W  ->  (
( M  o.  (reverse `  A ) ) ++  A
)  .~  (/) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efginvrel1
Dummy variables  a 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 6256 . . . . . . . . . 10  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3635 . . . . . . . . 9  |-  W  C_ Word  ( I  X.  2o )
43sseli 3599 . . . . . . . 8  |-  ( A  e.  W  ->  A  e. Word  ( I  X.  2o ) )
5 revcl 13510 . . . . . . . 8  |-  ( A  e. Word  ( I  X.  2o )  ->  (reverse `  A
)  e. Word  ( I  X.  2o ) )
64, 5syl 17 . . . . . . 7  |-  ( A  e.  W  ->  (reverse `  A )  e. Word  (
I  X.  2o ) )
7 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
87efgmf 18126 . . . . . . 7  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
9 revco 13580 . . . . . . 7  |-  ( ( (reverse `  A )  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  (reverse `  (reverse `  A ) ) )  =  (reverse `  ( M  o.  (reverse `  A
) ) ) )
106, 8, 9sylancl 694 . . . . . 6  |-  ( A  e.  W  ->  ( M  o.  (reverse `  (reverse `  A ) ) )  =  (reverse `  ( M  o.  (reverse `  A
) ) ) )
11 revrev 13516 . . . . . . . 8  |-  ( A  e. Word  ( I  X.  2o )  ->  (reverse `  (reverse `  A ) )  =  A )
124, 11syl 17 . . . . . . 7  |-  ( A  e.  W  ->  (reverse `  (reverse `  A )
)  =  A )
1312coeq2d 5284 . . . . . 6  |-  ( A  e.  W  ->  ( M  o.  (reverse `  (reverse `  A ) ) )  =  ( M  o.  A ) )
1410, 13eqtr3d 2658 . . . . 5  |-  ( A  e.  W  ->  (reverse `  ( M  o.  (reverse `  A ) ) )  =  ( M  o.  A ) )
1514coeq2d 5284 . . . 4  |-  ( A  e.  W  ->  ( M  o.  (reverse `  ( M  o.  (reverse `  A
) ) ) )  =  ( M  o.  ( M  o.  A
) ) )
16 wrdf 13310 . . . . . . . . 9  |-  ( A  e. Word  ( I  X.  2o )  ->  A :
( 0..^ ( # `  A ) ) --> ( I  X.  2o ) )
174, 16syl 17 . . . . . . . 8  |-  ( A  e.  W  ->  A : ( 0..^ (
# `  A )
) --> ( I  X.  2o ) )
1817ffvelrnda 6359 . . . . . . 7  |-  ( ( A  e.  W  /\  c  e.  ( 0..^ ( # `  A
) ) )  -> 
( A `  c
)  e.  ( I  X.  2o ) )
197efgmnvl 18127 . . . . . . 7  |-  ( ( A `  c )  e.  ( I  X.  2o )  ->  ( M `
 ( M `  ( A `  c ) ) )  =  ( A `  c ) )
2018, 19syl 17 . . . . . 6  |-  ( ( A  e.  W  /\  c  e.  ( 0..^ ( # `  A
) ) )  -> 
( M `  ( M `  ( A `  c ) ) )  =  ( A `  c ) )
2120mpteq2dva 4744 . . . . 5  |-  ( A  e.  W  ->  (
c  e.  ( 0..^ ( # `  A
) )  |->  ( M `
 ( M `  ( A `  c ) ) ) )  =  ( c  e.  ( 0..^ ( # `  A
) )  |->  ( A `
 c ) ) )
228ffvelrni 6358 . . . . . . 7  |-  ( ( A `  c )  e.  ( I  X.  2o )  ->  ( M `
 ( A `  c ) )  e.  ( I  X.  2o ) )
2318, 22syl 17 . . . . . 6  |-  ( ( A  e.  W  /\  c  e.  ( 0..^ ( # `  A
) ) )  -> 
( M `  ( A `  c )
)  e.  ( I  X.  2o ) )
24 fcompt 6400 . . . . . . 7  |-  ( ( M : ( I  X.  2o ) --> ( I  X.  2o )  /\  A : ( 0..^ ( # `  A
) ) --> ( I  X.  2o ) )  ->  ( M  o.  A )  =  ( c  e.  ( 0..^ ( # `  A
) )  |->  ( M `
 ( A `  c ) ) ) )
258, 17, 24sylancr 695 . . . . . 6  |-  ( A  e.  W  ->  ( M  o.  A )  =  ( c  e.  ( 0..^ ( # `  A ) )  |->  ( M `  ( A `
 c ) ) ) )
268a1i 11 . . . . . . 7  |-  ( A  e.  W  ->  M : ( I  X.  2o ) --> ( I  X.  2o ) )
2726feqmptd 6249 . . . . . 6  |-  ( A  e.  W  ->  M  =  ( a  e.  ( I  X.  2o )  |->  ( M `  a ) ) )
28 fveq2 6191 . . . . . 6  |-  ( a  =  ( M `  ( A `  c ) )  ->  ( M `  a )  =  ( M `  ( M `
 ( A `  c ) ) ) )
2923, 25, 27, 28fmptco 6396 . . . . 5  |-  ( A  e.  W  ->  ( M  o.  ( M  o.  A ) )  =  ( c  e.  ( 0..^ ( # `  A
) )  |->  ( M `
 ( M `  ( A `  c ) ) ) ) )
3017feqmptd 6249 . . . . 5  |-  ( A  e.  W  ->  A  =  ( c  e.  ( 0..^ ( # `  A ) )  |->  ( A `  c ) ) )
3121, 29, 303eqtr4d 2666 . . . 4  |-  ( A  e.  W  ->  ( M  o.  ( M  o.  A ) )  =  A )
3215, 31eqtrd 2656 . . 3  |-  ( A  e.  W  ->  ( M  o.  (reverse `  ( M  o.  (reverse `  A
) ) ) )  =  A )
3332oveq2d 6666 . 2  |-  ( A  e.  W  ->  (
( M  o.  (reverse `  A ) ) ++  ( M  o.  (reverse `  ( M  o.  (reverse `  A
) ) ) ) )  =  ( ( M  o.  (reverse `  A
) ) ++  A ) )
34 wrdco 13577 . . . . 5  |-  ( ( (reverse `  A )  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  (reverse `  A
) )  e. Word  (
I  X.  2o ) )
356, 8, 34sylancl 694 . . . 4  |-  ( A  e.  W  ->  ( M  o.  (reverse `  A
) )  e. Word  (
I  X.  2o ) )
361efgrcl 18128 . . . . 5  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
3736simprd 479 . . . 4  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
3835, 37eleqtrrd 2704 . . 3  |-  ( A  e.  W  ->  ( M  o.  (reverse `  A
) )  e.  W
)
39 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
40 efgval2.t . . . 4  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
411, 39, 7, 40efginvrel2 18140 . . 3  |-  ( ( M  o.  (reverse `  A
) )  e.  W  ->  ( ( M  o.  (reverse `  A ) ) ++  ( M  o.  (reverse `  ( M  o.  (reverse `  A ) ) ) ) )  .~  (/) )
4238, 41syl 17 . 2  |-  ( A  e.  W  ->  (
( M  o.  (reverse `  A ) ) ++  ( M  o.  (reverse `  ( M  o.  (reverse `  A
) ) ) ) )  .~  (/) )
4333, 42eqbrtrrd 4677 1  |-  ( A  e.  W  ->  (
( M  o.  (reverse `  A ) ) ++  A
)  .~  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   (/)c0 3915   <.cop 4183   <.cotp 4185   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296  reversecreverse 13297   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-efg 18122
This theorem is referenced by:  frgp0  18173
  Copyright terms: Public domain W3C validator