MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Visualization version   Unicode version

Theorem efgtlen 18139
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efgtlen  |-  ( ( X  e.  W  /\  A  e.  ran  ( T `
 X ) )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)    X( y, z, w, v, n)

Proof of Theorem efgtlen
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
51, 2, 3, 4efgtf 18135 . . . . . . 7  |-  ( X  e.  W  ->  (
( T `  X
)  =  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  X ) : ( ( 0 ... ( # `  X
) )  X.  (
I  X.  2o ) ) --> W ) )
65simpld 475 . . . . . 6  |-  ( X  e.  W  ->  ( T `  X )  =  ( a  e.  ( 0 ... ( # `
 X ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
) ) )
76rneqd 5353 . . . . 5  |-  ( X  e.  W  ->  ran  ( T `  X )  =  ran  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) ) )
87eleq2d 2687 . . . 4  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  <->  A  e.  ran  ( a  e.  ( 0 ... ( # `  X ) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
) ) )
9 eqid 2622 . . . . 5  |-  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  =  ( a  e.  ( 0 ... ( # `  X ) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)
10 ovex 6678 . . . . 5  |-  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. )  e.  _V
119, 10elrnmpt2 6773 . . . 4  |-  ( A  e.  ran  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  <->  E. a  e.  ( 0 ... ( # `
 X ) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )
128, 11syl6bb 276 . . 3  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  <->  E. a  e.  ( 0 ... ( # `
 X ) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) ) )
13 fviss 6256 . . . . . . . . 9  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
141, 13eqsstri 3635 . . . . . . . 8  |-  W  C_ Word  ( I  X.  2o )
15 simpl 473 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  X  e.  W
)
1614, 15sseldi 3601 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  X  e. Word  (
I  X.  2o ) )
17 elfzuz 12338 . . . . . . . . 9  |-  ( a  e.  ( 0 ... ( # `  X
) )  ->  a  e.  ( ZZ>= `  0 )
)
1817ad2antrl 764 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  (
ZZ>= `  0 ) )
19 eluzfz2b 12350 . . . . . . . 8  |-  ( a  e.  ( ZZ>= `  0
)  <->  a  e.  ( 0 ... a ) )
2018, 19sylib 208 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... a ) )
21 simprl 794 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... ( # `  X ) ) )
22 simprr 796 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
233efgmf 18126 . . . . . . . . . 10  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
2423ffvelrni 6358 . . . . . . . . 9  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
2522, 24syl 17 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
2622, 25s2cld 13616 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ( M `  b ) ">  e. Word  (
I  X.  2o ) )
2716, 20, 21, 26spllen 13505 . . . . . 6  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  =  ( (
# `  X )  +  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) ) ) )
28 s2len 13634 . . . . . . . . . 10  |-  ( # `  <" b ( M `  b ) "> )  =  2
2928a1i 11 . . . . . . . . 9  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  <" b ( M `  b ) "> )  =  2 )
30 eluzelcn 11699 . . . . . . . . . . 11  |-  ( a  e.  ( ZZ>= `  0
)  ->  a  e.  CC )
3118, 30syl 17 . . . . . . . . . 10  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  CC )
3231subidd 10380 . . . . . . . . 9  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( a  -  a )  =  0 )
3329, 32oveq12d 6668 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) )  =  ( 2  -  0 ) )
34 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
3534subid1i 10353 . . . . . . . 8  |-  ( 2  -  0 )  =  2
3633, 35syl6eq 2672 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) )  =  2 )
3736oveq2d 6666 . . . . . 6  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  X )  +  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a ) ) )  =  ( (
# `  X )  +  2 ) )
3827, 37eqtrd 2656 . . . . 5  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  =  ( (
# `  X )  +  2 ) )
39 fveq2 6191 . . . . . 6  |-  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( # `  A
)  =  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
) ) )
4039eqeq1d 2624 . . . . 5  |-  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( ( # `
 A )  =  ( ( # `  X
)  +  2 )  <-> 
( # `  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  =  ( ( # `  X
)  +  2 ) ) )
4138, 40syl5ibrcom 237 . . . 4  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) ) )
4241rexlimdvva 3038 . . 3  |-  ( X  e.  W  ->  ( E. a  e.  (
0 ... ( # `  X
) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) ) )
4312, 42sylbid 230 . 2  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  -> 
( # `  A )  =  ( ( # `  X )  +  2 ) ) )
4443imp 445 1  |-  ( ( X  e.  W  /\  A  e.  ran  ( T `
 X ) )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571   <.cop 4183   <.cotp 4185    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   CCcc 9934   0cc0 9936    + caddc 9939    - cmin 10266   2c2 11070   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgsfo  18152  efgredlemg  18155  efgredlemd  18157  efgredlem  18160  frgpnabllem1  18276
  Copyright terms: Public domain W3C validator