Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2 Structured version   Visualization version   GIF version

Theorem eldioph2 37325
Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 37315. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
eldioph2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑃,𝑢   𝑡,𝑆,𝑢   𝑡,𝑁,𝑢

Proof of Theorem eldioph2
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpcompact2 37315 . . 3 (𝑃 ∈ (mzPoly‘𝑆) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
213ad2ant3 1084 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
3 fveq1 6190 . . . . . . . . . 10 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (𝑃𝑢) = ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢))
43eqeq1d 2624 . . . . . . . . 9 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑃𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0))
54anbi2d 740 . . . . . . . 8 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
65rexbidv 3052 . . . . . . 7 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
76abbidv 2741 . . . . . 6 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
87ad2antll 765 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
9 simplll 798 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑁 ∈ ℕ0)
10 simplrl 800 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎 ∈ Fin)
11 fzfi 12771 . . . . . . . . . . . 12 (1...𝑁) ∈ Fin
12 unfi 8227 . . . . . . . . . . . 12 ((𝑎 ∈ Fin ∧ (1...𝑁) ∈ Fin) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
1310, 11, 12sylancl 694 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
14 ssun2 3777 . . . . . . . . . . . 12 (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))
1514a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁)))
16 eldioph2lem1 37323 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
179, 13, 15, 16syl3anc 1326 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
18 f1ococnv2 6163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
1918ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
2019reseq1d 5395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑑𝑑) ↾ 𝑎) = (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎))
21 ssun1 3776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑎 ⊆ (𝑎 ∪ (1...𝑁))
22 resabs1 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ (𝑎 ∪ (1...𝑁)) → (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎))
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎)
2420, 23syl6req 2673 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = ((𝑑𝑑) ↾ 𝑎))
25 resco 5639 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑑) ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎))
2624, 25syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2827coeq2d 5284 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))))
29 coires1 5653 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒𝑎)
30 coass 5654 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒𝑑) ∘ (𝑑𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎)))
3130eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))) = ((𝑒𝑑) ∘ (𝑑𝑎))
3228, 29, 313eqtr3g 2679 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒𝑎) = ((𝑒𝑑) ∘ (𝑑𝑎)))
3332fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑏‘(𝑒𝑎)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
34 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (1...𝑐) ∈ V)
35 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → 𝑒 ∈ (ℤ ↑𝑚 𝑆))
36 f1of1 6136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
3736ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
38 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎𝑆)
39 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → (1...𝑁) ⊆ 𝑆)
4039ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ 𝑆)
4138, 40unssd 3789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
4241ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
43 f1ss 6106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)) ∧ (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → 𝑑:(1...𝑐)–1-1𝑆)
4437, 42, 43syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1𝑆)
45 f1f 6101 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑:(1...𝑐)–1-1𝑆𝑑:(1...𝑐)⟶𝑆)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)⟶𝑆)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → 𝑑:(1...𝑐)⟶𝑆)
48 mapco2g 37277 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑐) ∈ V ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆) ∧ 𝑑:(1...𝑐)⟶𝑆) → (𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)))
4934, 35, 47, 48syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)))
50 coeq1 5279 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = (𝑒𝑑) → ( ∘ (𝑑𝑎)) = ((𝑒𝑑) ∘ (𝑑𝑎)))
5150fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 ( = (𝑒𝑑) → (𝑏‘( ∘ (𝑑𝑎))) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
52 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) = ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))
53 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))) ∈ V
5451, 52, 53fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)) → (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5633, 55eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑏‘(𝑒𝑎)) = (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))
5756mpteq2dva 4744 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑))))
5857fveq1d 6193 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢))
5958eqeq1d 2624 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0))
6059anbi2d 740 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6160rexbidv 3052 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6261abbidv 2741 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)})
63 simplrl 800 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → 𝑆 ∈ V)
6463ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V)
65 simprr 796 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
66 diophrw 37322 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ 𝑑:(1...𝑐)–1-1𝑆 ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6764, 44, 65, 66syl3anc 1326 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6862, 67eqtrd 2656 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
69 simp-5l 808 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
70 simplrl 800 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐 ∈ (ℤ𝑁))
71 ovexd 6680 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (1...𝑐) ∈ V)
72 simplrr 801 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑏 ∈ (mzPoly‘𝑎))
7372ad2antrr 762 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘𝑎))
74 f1ocnv 6149 . . . . . . . . . . . . . . . . . 18 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐))
75 f1of 6137 . . . . . . . . . . . . . . . . . 18 (𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
77 fssres 6070 . . . . . . . . . . . . . . . . 17 ((𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐) ∧ 𝑎 ⊆ (𝑎 ∪ (1...𝑁))) → (𝑑𝑎):𝑎⟶(1...𝑐))
7876, 21, 77sylancl 694 . . . . . . . . . . . . . . . 16 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑎):𝑎⟶(1...𝑐))
7978ad2antrl 764 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑎):𝑎⟶(1...𝑐))
80 mzprename 37312 . . . . . . . . . . . . . . 15 (((1...𝑐) ∈ V ∧ 𝑏 ∈ (mzPoly‘𝑎) ∧ (𝑑𝑎):𝑎⟶(1...𝑐)) → ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
8171, 73, 79, 80syl3anc 1326 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
82 eldioph 37321 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑐 ∈ (ℤ𝑁) ∧ ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8369, 70, 81, 82syl3anc 1326 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8468, 83eqeltrd 2701 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8584ex 450 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) → ((𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8685rexlimdvva 3038 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8717, 86mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8887exp31 630 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
89883adant3 1081 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
9089imp31 448 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
9190adantrr 753 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
928, 91eqeltrd 2701 . . . 4 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
9392ex 450 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → ((𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
9493rexlimdvva 3038 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
952, 94mpd 15 1 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  cun 3572  wss 3574  cmpt 4729   I cid 5023  ccnv 5113  cres 5116  ccom 5118  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eldioph2b  37326  diophin  37336  diophun  37337
  Copyright terms: Public domain W3C validator