Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   Unicode version

Theorem eldioph4b 37375
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a  |-  W  e. 
_V
eldioph4b.b  |-  -.  W  e.  Fin
eldioph4b.c  |-  ( W  i^i  NN )  =  (/)
Assertion
Ref Expression
eldioph4b  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Distinct variable groups:    W, p, t, w    S, p, t, w    N, p, t, w

Proof of Theorem eldioph4b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 37327 . 2  |-  ( S  e.  (Dioph `  N
)  ->  N  e.  NN0 )
2 eldioph4b.a . . . . . 6  |-  W  e. 
_V
3 ovex 6678 . . . . . 6  |-  ( 1 ... N )  e. 
_V
42, 3unex 6956 . . . . 5  |-  ( W  u.  ( 1 ... N ) )  e. 
_V
54jctr 565 . . . 4  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  ( W  u.  ( 1 ... N ) )  e.  _V ) )
6 eldioph4b.b . . . . . . 7  |-  -.  W  e.  Fin
76intnanr 961 . . . . . 6  |-  -.  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin )
8 unfir 8228 . . . . . 6  |-  ( ( W  u.  ( 1 ... N ) )  e.  Fin  ->  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin ) )
97, 8mto 188 . . . . 5  |-  -.  ( W  u.  ( 1 ... N ) )  e.  Fin
10 ssun2 3777 . . . . 5  |-  ( 1 ... N )  C_  ( W  u.  (
1 ... N ) )
119, 10pm3.2i 471 . . . 4  |-  ( -.  ( W  u.  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  C_  ( W  u.  (
1 ... N ) ) )
12 eldioph2b 37326 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( W  u.  (
1 ... N ) )  e.  _V )  /\  ( -.  ( W  u.  ( 1 ... N
) )  e.  Fin  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) ) )  ->  ( S  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
135, 11, 12sylancl 694 . . 3  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
14 elmapssres 7882 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  (
1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) ) )
1510, 14mpan2 707 . . . . . . . . . . . . . 14  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
1615adantr 481 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
17 ssun1 3776 . . . . . . . . . . . . . . . 16  |-  W  C_  ( W  u.  (
1 ... N ) )
18 elmapssres 7882 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  W  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  W )  e.  ( NN0  ^m  W ) )
1917, 18mpan2 707 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
2019adantr 481 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
21 uncom 3757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( ( u  |`  W )  u.  (
u  |`  ( 1 ... N ) ) )
22 resundi 5410 . . . . . . . . . . . . . . . . . . 19  |-  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  ( ( u  |`  W )  u.  ( u  |`  (
1 ... N ) ) )
2321, 22eqtr4i 2647 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( u  |`  ( W  u.  ( 1 ... N ) ) )
24 elmapi 7879 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  u :
( W  u.  (
1 ... N ) ) --> NN0 )
25 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( u : ( W  u.  ( 1 ... N
) ) --> NN0  ->  u  Fn  ( W  u.  ( 1 ... N
) ) )
26 fnresdm 6000 . . . . . . . . . . . . . . . . . . 19  |-  ( u  Fn  ( W  u.  ( 1 ... N
) )  ->  (
u  |`  ( W  u.  ( 1 ... N
) ) )  =  u )
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  u )
2823, 27syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  u )
2928fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  ( p `
 u ) )
3029eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0  <-> 
( p `  u
)  =  0 ) )
3130biimpar 502 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 )
32 uneq2 3761 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( u  |`  W )  ->  (
( u  |`  (
1 ... N ) )  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )
3332fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( u  |`  W )  ->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  ( u  |`  W ) ) ) )
3433eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u  |`  W )  ->  (
( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0  <->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 ) )
3534rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( ( u  |`  W )  e.  ( NN0  ^m  W )  /\  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0 )  ->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 )
3620, 31, 35syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  E. w  e.  ( NN0  ^m  W ) ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0 )
3716, 36jca 554 . . . . . . . . . . . 12  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
38 eleq1 2689 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  e.  ( NN0 
^m  ( 1 ... N ) )  <->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) ) )
39 uneq1 3760 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  w
) )
4039fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
p `  ( t  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) ) )
4140eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( p `  (
t  u.  w ) )  =  0  <->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  0 ) )
4241rexbidv 3052 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  <->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
4338, 42anbi12d 747 . . . . . . . . . . . 12  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 )  <->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) ) )
4437, 43syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( t  =  ( u  |`  (
1 ... N ) )  ->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4544expimpd 629 . . . . . . . . . 10  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
( p `  u
)  =  0  /\  t  =  ( u  |`  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4645ancomsd 470 . . . . . . . . 9  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4746rexlimiv 3027 . . . . . . . 8  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
48 uncom 3757 . . . . . . . . . . . 12  |-  ( t  u.  w )  =  ( w  u.  t
)
49 fz1ssnn 12372 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... N )  C_  NN
50 sslin 3839 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... N ) 
C_  NN  ->  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN ) )
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN )
52 eldioph4b.c . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  NN )  =  (/)
5351, 52sseqtri 3637 . . . . . . . . . . . . . . . . . 18  |-  ( W  i^i  ( 1 ... N ) )  C_  (/)
54 ss0 3974 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  i^i  ( 1 ... N ) ) 
C_  (/)  ->  ( W  i^i  ( 1 ... N
) )  =  (/) )
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( W  i^i  ( 1 ... N ) )  =  (/)
5655reseq2i 5393 . . . . . . . . . . . . . . . 16  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( w  |`  (/) )
57 res0 5400 . . . . . . . . . . . . . . . 16  |-  ( w  |`  (/) )  =  (/)
5856, 57eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
5955reseq2i 5393 . . . . . . . . . . . . . . . 16  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  (/) )
60 res0 5400 . . . . . . . . . . . . . . . 16  |-  ( t  |`  (/) )  =  (/)
6159, 60eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
6258, 61eqtr4i 2647 . . . . . . . . . . . . . 14  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  ( W  i^i  (
1 ... N ) ) )
63 elmapresaun 37334 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( w  u.  t )  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) )
6462, 63mp3an3 1413 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6564ancoms 469 . . . . . . . . . . . 12  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6648, 65syl5eqel 2705 . . . . . . . . . . 11  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6766adantr 481 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
t  u.  w )  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) ) )
6848reseq1i 5392 . . . . . . . . . . . 12  |-  ( ( t  u.  w )  |`  ( 1 ... N
) )  =  ( ( w  u.  t
)  |`  ( 1 ... N ) )
69 elmapresaunres2 37335 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( (
w  u.  t )  |`  ( 1 ... N
) )  =  t )
7062, 69mp3an3 1413 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7170ancoms 469 . . . . . . . . . . . 12  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7268, 71syl5req 2669 . . . . . . . . . . 11  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
7372adantr 481 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
74 simpr 477 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
p `  ( t  u.  w ) )  =  0 )
75 reseq1 5390 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
u  |`  ( 1 ... N ) )  =  ( ( t  u.  w )  |`  (
1 ... N ) ) )
7675eqeq2d 2632 . . . . . . . . . . . 12  |-  ( u  =  ( t  u.  w )  ->  (
t  =  ( u  |`  ( 1 ... N
) )  <->  t  =  ( ( t  u.  w )  |`  (
1 ... N ) ) ) )
77 fveq2 6191 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
p `  u )  =  ( p `  ( t  u.  w
) ) )
7877eqeq1d 2624 . . . . . . . . . . . 12  |-  ( u  =  ( t  u.  w )  ->  (
( p `  u
)  =  0  <->  (
p `  ( t  u.  w ) )  =  0 ) )
7976, 78anbi12d 747 . . . . . . . . . . 11  |-  ( u  =  ( t  u.  w )  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( ( t  u.  w )  |`  (
1 ... N ) )  /\  ( p `  ( t  u.  w
) )  =  0 ) ) )
8079rspcev 3309 . . . . . . . . . 10  |-  ( ( ( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( t  =  ( ( t  u.  w
)  |`  ( 1 ... N ) )  /\  ( p `  (
t  u.  w ) )  =  0 ) )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8167, 73, 74, 80syl12anc 1324 . . . . . . . . 9  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8281r19.29an 3077 . . . . . . . 8  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0 
^m  W ) ( p `  ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) )
8347, 82impbii 199 . . . . . . 7  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
8483abbii 2739 . . . . . 6  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
85 df-rab 2921 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
8684, 85eqtr4i 2647 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 }
8786eqeq2i 2634 . . . 4  |-  ( S  =  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  S  =  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
8887rexbii 3041 . . 3  |-  ( E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
8913, 88syl6bb 276 . 2  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 } ) )
901, 89biadan2 674 1  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eldioph4i  37376  diophren  37377
  Copyright terms: Public domain W3C validator