![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl6lem | Structured version Visualization version GIF version |
Description: Lemma for lcfl6 36789. A functional 𝐺 (whose kernel is closed by dochsnkr 36761) is comletely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
Ref | Expression |
---|---|
lcfl6lem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl6lem.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl6lem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl6lem.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl6lem.a | ⊢ + = (+g‘𝑈) |
lcfl6lem.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfl6lem.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfl6lem.i | ⊢ 1 = (1r‘𝑆) |
lcfl6lem.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfl6lem.z | ⊢ 0 = (0g‘𝑈) |
lcfl6lem.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl6lem.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl6lem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl6lem.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl6lem.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
lcfl6lem.y | ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) |
Ref | Expression |
---|---|
lcfl6lem | ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl6lem.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfl6lem.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
3 | lcfl6lem.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
4 | eqid 2622 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
5 | lcfl6lem.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcfl6lem.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcfl6lem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | lcfl6lem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | lcfl6lem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 7, 8, 9 | dvhlvec 36398 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
11 | 7, 8, 9 | dvhlmod 36399 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | lcfl6lem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
13 | 1, 5, 6, 11, 12 | lkrssv 34383 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
14 | lcfl6lem.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | 7, 8, 1, 14 | dochssv 36644 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
16 | 9, 13, 15 | syl2anc 693 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
17 | lcfl6lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
18 | 17 | eldifad 3586 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
19 | 16, 18 | sseldd 3604 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | lcfl6lem.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
21 | lcfl6lem.a | . . 3 ⊢ + = (+g‘𝑈) | |
22 | lcfl6lem.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
23 | eqid 2622 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) | |
24 | eldifsni 4320 | . . . . 5 ⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) → 𝑋 ≠ 0 ) | |
25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
26 | eldifsn 4317 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
27 | 19, 25, 26 | sylanbrc 698 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
28 | 7, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27 | dochflcl 36764 | . 2 ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹) |
29 | 7, 14, 8, 1, 20, 5, 6, 9, 12, 17 | dochsnkr 36761 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
30 | 7, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27 | dochsnkr2 36762 | . . 3 ⊢ (𝜑 → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ⊥ ‘{𝑋})) |
31 | 29, 30 | eqtr4d 2659 | . 2 ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))) |
32 | lcfl6lem.y | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | |
33 | lcfl6lem.i | . . . 4 ⊢ 1 = (1r‘𝑆) | |
34 | 7, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23 | dochfl1 36765 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 ) |
35 | 32, 34 | eqtr4d 2659 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋)) |
36 | 7, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17 | dochfln0 36766 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ (0g‘𝑆)) |
37 | 1, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36 | eqlkr3 34388 | 1 ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 1rcur 18501 LFnlclfn 34344 LKerclk 34372 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lfl 34345 df-lkr 34373 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 |
This theorem is referenced by: lcfl6 36789 |
Copyright terms: Public domain | W3C validator |