Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   Unicode version

Theorem eqlkr3 34388
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v  |-  V  =  ( Base `  W
)
eqlkr3.s  |-  S  =  (Scalar `  W )
eqlkr3.r  |-  R  =  ( Base `  S
)
eqlkr3.o  |-  .0.  =  ( 0g `  S )
eqlkr3.f  |-  F  =  (LFnl `  W )
eqlkr3.k  |-  K  =  (LKer `  W )
eqlkr3.w  |-  ( ph  ->  W  e.  LVec )
eqlkr3.x  |-  ( ph  ->  X  e.  V )
eqlkr3.g  |-  ( ph  ->  G  e.  F )
eqlkr3.h  |-  ( ph  ->  H  e.  F )
eqlkr3.e  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
eqlkr3.a  |-  ( ph  ->  ( G `  X
)  =  ( H `
 X ) )
eqlkr3.n  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
Assertion
Ref Expression
eqlkr3  |-  ( ph  ->  G  =  H )

Proof of Theorem eqlkr3
Dummy variables  x  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 eqlkr3.g . . . 4  |-  ( ph  ->  G  e.  F )
3 eqlkr3.s . . . . 5  |-  S  =  (Scalar `  W )
4 eqlkr3.r . . . . 5  |-  R  =  ( Base `  S
)
5 eqlkr3.v . . . . 5  |-  V  =  ( Base `  W
)
6 eqlkr3.f . . . . 5  |-  F  =  (LFnl `  W )
73, 4, 5, 6lflf 34350 . . . 4  |-  ( ( W  e.  LVec  /\  G  e.  F )  ->  G : V --> R )
81, 2, 7syl2anc 693 . . 3  |-  ( ph  ->  G : V --> R )
9 ffn 6045 . . 3  |-  ( G : V --> R  ->  G  Fn  V )
108, 9syl 17 . 2  |-  ( ph  ->  G  Fn  V )
11 eqlkr3.h . . . 4  |-  ( ph  ->  H  e.  F )
123, 4, 5, 6lflf 34350 . . . 4  |-  ( ( W  e.  LVec  /\  H  e.  F )  ->  H : V --> R )
131, 11, 12syl2anc 693 . . 3  |-  ( ph  ->  H : V --> R )
14 ffn 6045 . . 3  |-  ( H : V --> R  ->  H  Fn  V )
1513, 14syl 17 . 2  |-  ( ph  ->  H  Fn  V )
16 eqlkr3.e . . . . . . 7  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
17 eqid 2622 . . . . . . . 8  |-  ( .r
`  S )  =  ( .r `  S
)
18 eqlkr3.k . . . . . . . 8  |-  K  =  (LKer `  W )
193, 4, 17, 5, 6, 18eqlkr 34386 . . . . . . 7  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( K `  G
)  =  ( K `
 H ) )  ->  E. r  e.  R  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r ) )
201, 2, 11, 16, 19syl121anc 1331 . . . . . 6  |-  ( ph  ->  E. r  e.  R  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r ) )
21 eqlkr3.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  V )
2221adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  R )  ->  X  e.  V )
23 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  X  ->  ( H `  x )  =  ( H `  X ) )
24 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
2524oveq1d 6665 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
( G `  x
) ( .r `  S ) r )  =  ( ( G `
 X ) ( .r `  S ) r ) )
2623, 25eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( H `  x
)  =  ( ( G `  x ) ( .r `  S
) r )  <->  ( H `  X )  =  ( ( G `  X
) ( .r `  S ) r ) ) )
2726rspcv 3305 . . . . . . . . . 10  |-  ( X  e.  V  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r )  ->  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) ) )
2822, 27syl 17 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  R )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r )  ->  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) ) )
29 eqlkr3.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G `  X
)  =  ( H `
 X ) )
3029adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  R )  ->  ( G `  X )  =  ( H `  X ) )
3130adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( G `  X
)  =  ( H `
 X ) )
32 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( H `  X
)  =  ( ( G `  X ) ( .r `  S
) r ) )
3331, 32eqtr2d 2657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( ( G `  X ) ( .r
`  S ) r )  =  ( G `
 X ) )
3433oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( ( G `  X ) ( .r `  S
) r ) )  =  ( ( (
invr `  S ) `  ( G `  X
) ) ( .r
`  S ) ( G `  X ) ) )
353lvecdrng 19105 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  LVec  ->  S  e.  DivRing )
361, 35syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  DivRing )
3736adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  R )  ->  S  e.  DivRing )
383, 4, 5, 6lflcl 34351 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  X  e.  V )  ->  ( G `  X )  e.  R )
391, 2, 21, 38syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G `  X
)  e.  R )
4039adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  R )  ->  ( G `  X )  e.  R )
41 eqlkr3.n . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
4241adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  e.  R )  ->  ( G `  X )  =/=  .0.  )
43 eqlkr3.o . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  S )
44 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( 1r
`  S )  =  ( 1r `  S
)
45 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( invr `  S )  =  (
invr `  S )
464, 43, 17, 44, 45drnginvrl 18766 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  R  /\  ( G `  X )  =/=  .0.  )  ->  (
( ( invr `  S
) `  ( G `  X ) ) ( .r `  S ) ( G `  X
) )  =  ( 1r `  S ) )
4737, 40, 42, 46syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  R )  ->  (
( ( invr `  S
) `  ( G `  X ) ) ( .r `  S ) ( G `  X
) )  =  ( 1r `  S ) )
4847oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  R )  ->  (
( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( G `
 X ) ) ( .r `  S
) r )  =  ( ( 1r `  S ) ( .r
`  S ) r ) )
49 lveclmod 19106 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  LVec  ->  W  e. 
LMod )
501, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  e.  LMod )
513lmodring 18871 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LMod  ->  S  e. 
Ring )
5250, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e.  Ring )
5352adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  R )  ->  S  e.  Ring )
544, 43, 45drnginvrcl 18764 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  R  /\  ( G `  X )  =/=  .0.  )  ->  (
( invr `  S ) `  ( G `  X
) )  e.  R
)
5537, 40, 42, 54syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  R )  ->  (
( invr `  S ) `  ( G `  X
) )  e.  R
)
56 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  R )  ->  r  e.  R )
574, 17ringass 18564 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Ring  /\  (
( ( invr `  S
) `  ( G `  X ) )  e.  R  /\  ( G `
 X )  e.  R  /\  r  e.  R ) )  -> 
( ( ( (
invr `  S ) `  ( G `  X
) ) ( .r
`  S ) ( G `  X ) ) ( .r `  S ) r )  =  ( ( (
invr `  S ) `  ( G `  X
) ) ( .r
`  S ) ( ( G `  X
) ( .r `  S ) r ) ) )
5853, 55, 40, 56, 57syl13anc 1328 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  R )  ->  (
( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( G `
 X ) ) ( .r `  S
) r )  =  ( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( ( G `  X ) ( .r `  S
) r ) ) )
594, 17, 44ringlidm 18571 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Ring  /\  r  e.  R )  ->  (
( 1r `  S
) ( .r `  S ) r )  =  r )
6053, 56, 59syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  R )  ->  (
( 1r `  S
) ( .r `  S ) r )  =  r )
6148, 58, 603eqtr3d 2664 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  R )  ->  (
( ( invr `  S
) `  ( G `  X ) ) ( .r `  S ) ( ( G `  X ) ( .r
`  S ) r ) )  =  r )
6261adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( ( G `  X ) ( .r `  S
) r ) )  =  r )
6347adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
( ( ( invr `  S ) `  ( G `  X )
) ( .r `  S ) ( G `
 X ) )  =  ( 1r `  S ) )
6434, 62, 633eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  R )  /\  ( H `  X )  =  ( ( G `
 X ) ( .r `  S ) r ) )  -> 
r  =  ( 1r
`  S ) )
6564ex 450 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  R )  ->  (
( H `  X
)  =  ( ( G `  X ) ( .r `  S
) r )  -> 
r  =  ( 1r
`  S ) ) )
6628, 65syld 47 . . . . . . . 8  |-  ( (
ph  /\  r  e.  R )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r )  ->  r  =  ( 1r `  S ) ) )
6766ancrd 577 . . . . . . 7  |-  ( (
ph  /\  r  e.  R )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r )  ->  (
r  =  ( 1r
`  S )  /\  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r ) ) ) )
6867reximdva 3017 . . . . . 6  |-  ( ph  ->  ( E. r  e.  R  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) r )  ->  E. r  e.  R  ( r  =  ( 1r `  S )  /\  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) r ) ) ) )
6920, 68mpd 15 . . . . 5  |-  ( ph  ->  E. r  e.  R  ( r  =  ( 1r `  S )  /\  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) r ) ) )
704, 44ringidcl 18568 . . . . . . 7  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  R )
7152, 70syl 17 . . . . . 6  |-  ( ph  ->  ( 1r `  S
)  e.  R )
72 oveq2 6658 . . . . . . . . 9  |-  ( r  =  ( 1r `  S )  ->  (
( G `  x
) ( .r `  S ) r )  =  ( ( G `
 x ) ( .r `  S ) ( 1r `  S
) ) )
7372eqeq2d 2632 . . . . . . . 8  |-  ( r  =  ( 1r `  S )  ->  (
( H `  x
)  =  ( ( G `  x ) ( .r `  S
) r )  <->  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) ( 1r
`  S ) ) ) )
7473ralbidv 2986 . . . . . . 7  |-  ( r  =  ( 1r `  S )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) r )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) ( 1r
`  S ) ) ) )
7574ceqsrexv 3336 . . . . . 6  |-  ( ( 1r `  S )  e.  R  ->  ( E. r  e.  R  ( r  =  ( 1r `  S )  /\  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) r ) )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) ( 1r `  S
) ) ) )
7671, 75syl 17 . . . . 5  |-  ( ph  ->  ( E. r  e.  R  ( r  =  ( 1r `  S
)  /\  A. x  e.  V  ( H `  x )  =  ( ( G `  x
) ( .r `  S ) r ) )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) ( 1r `  S
) ) ) )
7769, 76mpbid 222 . . . 4  |-  ( ph  ->  A. x  e.  V  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) ( 1r `  S
) ) )
7877r19.21bi 2932 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  ( H `  x )  =  ( ( G `
 x ) ( .r `  S ) ( 1r `  S
) ) )
7950adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LMod )
8079, 51syl 17 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  S  e.  Ring )
811adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LVec )
822adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  G  e.  F )
83 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
843, 4, 5, 6lflcl 34351 . . . . 5  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  R )
8581, 82, 83, 84syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  e.  R )
864, 17, 44ringridm 18572 . . . 4  |-  ( ( S  e.  Ring  /\  ( G `  x )  e.  R )  ->  (
( G `  x
) ( .r `  S ) ( 1r
`  S ) )  =  ( G `  x ) )
8780, 85, 86syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( G `  x
) ( .r `  S ) ( 1r
`  S ) )  =  ( G `  x ) )
8878, 87eqtr2d 2657 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  =  ( H `  x ) )
8910, 15, 88eqfnfvd 6314 1  |-  ( ph  ->  G  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   0gc0g 16100   1rcur 18501   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747   LModclmod 18863   LVecclvec 19102  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lvec 19103  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  lcfl6lem  36787
  Copyright terms: Public domain W3C validator