![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1rhmlem | Structured version Visualization version GIF version |
Description: Lemma for evl1rhm 19696 and evls1rhm 19687 (formerly part of the proof of evl1rhm 19696): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1rhmlem.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1rhmlem.t | ⊢ 𝑇 = (𝑅 ↑s 𝐵) |
evl1rhmlem.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
Ref | Expression |
---|---|
evls1rhmlem | ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhmlem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
2 | ovex 6678 | . . . . 5 ⊢ (𝐵 ↑𝑚 1𝑜) ∈ V | |
3 | eqid 2622 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) | |
4 | evl1rhmlem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | pwsbas 16147 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝐵 ↑𝑚 1𝑜) ∈ V) → (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
6 | 2, 5 | mpan2 707 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
7 | 6 | mpteq1d 4738 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))))) |
8 | 1, 7 | syl5eq 2668 | . 2 ⊢ (𝑅 ∈ CRing → 𝐹 = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))))) |
9 | evl1rhmlem.t | . . 3 ⊢ 𝑇 = (𝑅 ↑s 𝐵) | |
10 | eqid 2622 | . . 3 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) | |
11 | crngring 18558 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | fvex 6201 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
13 | 4, 12 | eqeltri 2697 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ V) |
15 | 2 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐵 ↑𝑚 1𝑜) ∈ V) |
16 | df1o2 7572 | . . . . 5 ⊢ 1𝑜 = {∅} | |
17 | 0ex 4790 | . . . . 5 ⊢ ∅ ∈ V | |
18 | eqid 2622 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) | |
19 | 16, 13, 17, 18 | mapsnf1o3 7906 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) |
20 | f1of 6137 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) | |
21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) |
22 | 9, 3, 10, 11, 14, 15, 21 | pwsco1rhm 18738 | . 2 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
23 | 8, 22 | eqeltrd 2701 | 1 ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 ↦ cmpt 4729 × cxp 5112 ∘ ccom 5118 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 1𝑜c1o 7553 ↑𝑚 cmap 7857 Basecbs 15857 ↑s cpws 16107 CRingccrg 18548 RingHom crh 18712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-ghm 17658 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-rnghom 18715 |
This theorem is referenced by: evls1rhm 19687 evl1rhm 19696 |
Copyright terms: Public domain | W3C validator |