![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version |
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
Ref | Expression |
---|---|
evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 18781 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4166 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 247 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | eqid 2622 | . . . 4 ⊢ (1𝑜 evalSub 𝑆) = (1𝑜 evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 19684 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅))) |
10 | 6, 9 | syldan 487 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅))) |
11 | evls1rhm.t | . . . . 5 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
12 | eqid 2622 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
13 | 1, 11, 12 | evls1rhmlem 19686 | . . . 4 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
15 | 1on 7567 | . . . . 5 ⊢ 1𝑜 ∈ On | |
16 | eqid 2622 | . . . . . 6 ⊢ ((1𝑜 evalSub 𝑆)‘𝑅) = ((1𝑜 evalSub 𝑆)‘𝑅) | |
17 | eqid 2622 | . . . . . 6 ⊢ (1𝑜 mPoly 𝑈) = (1𝑜 mPoly 𝑈) | |
18 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
19 | eqid 2622 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) | |
20 | 16, 17, 18, 19, 1 | evlsrhm 19521 | . . . . 5 ⊢ ((1𝑜 ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
21 | 15, 20 | mp3an1 1411 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
22 | eqidd 2623 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
23 | eqidd 2623 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) | |
24 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
25 | eqid 2622 | . . . . . . 7 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
26 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
27 | 24, 25, 26 | ply1bas 19565 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈)) |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈))) |
29 | eqid 2622 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
30 | 24, 17, 29 | ply1plusg 19595 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1𝑜 mPoly 𝑈)) |
31 | 30 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1𝑜 mPoly 𝑈))) |
32 | 31 | oveqdr 6674 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1𝑜 mPoly 𝑈))𝑦)) |
33 | eqidd 2623 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
34 | eqid 2622 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
35 | 24, 17, 34 | ply1mulr 19597 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1𝑜 mPoly 𝑈)) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1𝑜 mPoly 𝑈))) |
37 | 36 | oveqdr 6674 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1𝑜 mPoly 𝑈))𝑦)) |
38 | eqidd 2623 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
39 | 22, 23, 28, 23, 32, 33, 37, 38 | rhmpropd 18815 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) = ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
40 | 21, 39 | eleqtrrd 2704 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
41 | rhmco 18737 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇) ∧ ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
42 | 14, 40, 41 | syl2anc 693 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
43 | 10, 42 | eqeltrd 2701 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ↦ cmpt 4729 × cxp 5112 ∘ ccom 5118 Oncon0 5723 ‘cfv 5888 (class class class)co 6650 1𝑜c1o 7553 ↑𝑚 cmap 7857 Basecbs 15857 ↾s cress 15858 +gcplusg 15941 .rcmulr 15942 ↑s cpws 16107 CRingccrg 18548 RingHom crh 18712 SubRingcsubrg 18776 mPoly cmpl 19353 evalSub ces 19504 PwSer1cps1 19545 Poly1cpl1 19547 evalSub1 ces1 19678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-gsum 16103 df-prds 16108 df-pws 16110 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-srg 18506 df-ring 18549 df-cring 18550 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-assa 19312 df-asp 19313 df-ascl 19314 df-psr 19356 df-mvr 19357 df-mpl 19358 df-opsr 19360 df-evls 19506 df-psr1 19550 df-ply1 19552 df-evls1 19680 |
This theorem is referenced by: evls1gsumadd 19689 evls1gsummul 19690 evls1varpw 19691 |
Copyright terms: Public domain | W3C validator |