| Step | Hyp | Ref
| Expression |
| 1 | | pwsco1rhm.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | pwsco1rhm.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 3 | | pwsco1rhm.z |
. . . . 5
⊢ 𝑍 = (𝑅 ↑s 𝐵) |
| 4 | 3 | pwsring 18615 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → 𝑍 ∈ Ring) |
| 5 | 1, 2, 4 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑍 ∈ Ring) |
| 6 | | pwsco1rhm.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | | pwsco1rhm.y |
. . . . 5
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
| 8 | 7 | pwsring 18615 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Ring) |
| 9 | 1, 6, 8 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 10 | 5, 9 | jca 554 |
. 2
⊢ (𝜑 → (𝑍 ∈ Ring ∧ 𝑌 ∈ Ring)) |
| 11 | | pwsco1rhm.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑍) |
| 12 | | ringmnd 18556 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 13 | 1, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 14 | | pwsco1rhm.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 15 | 7, 3, 11, 13, 6, 2, 14 | pwsco1mhm 17370 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) |
| 16 | | ringgrp 18552 |
. . . . . 6
⊢ (𝑍 ∈ Ring → 𝑍 ∈ Grp) |
| 17 | 5, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ Grp) |
| 18 | | ringgrp 18552 |
. . . . . 6
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
| 19 | 9, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Grp) |
| 20 | | ghmmhmb 17671 |
. . . . 5
⊢ ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
| 21 | 17, 19, 20 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
| 22 | 15, 21 | eleqtrrd 2704 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌)) |
| 23 | | eqid 2622 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴) |
| 24 | | eqid 2622 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵) |
| 25 | | eqid 2622 |
. . . . 5
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 27 | 26 | ringmgp 18553 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 28 | 1, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 29 | 23, 24, 25, 28, 6, 2, 14 | pwsco1mhm 17370 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s
𝐴))) |
| 30 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 31 | 3, 30 | pwsbas 16147 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘𝑍)) |
| 32 | 13, 2, 31 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) = (Base‘𝑍)) |
| 33 | 32, 11 | syl6eqr 2674 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) = 𝐶) |
| 34 | 26, 30 | mgpbas 18495 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
| 35 | 24, 34 | pwsbas 16147 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐵 ∈
𝑊) →
((Base‘𝑅)
↑𝑚 𝐵) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
| 36 | 28, 2, 35 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵))) |
| 37 | 33, 36 | eqtr3d 2658 |
. . . . 5
⊢ (𝜑 → 𝐶 = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
| 38 | 37 | mpteq1d 4738 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹))) |
| 39 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))) |
| 40 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) |
| 41 | | eqid 2622 |
. . . . . . . 8
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
| 42 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)) |
| 43 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑍)) =
(+g‘(mulGrp‘𝑍)) |
| 44 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) |
| 45 | 3, 26, 24, 41, 42, 25, 43, 44 | pwsmgp 18618 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → ((Base‘(mulGrp‘𝑍)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
| 46 | 1, 2, 45 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
| 47 | 46 | simpld 475 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
| 48 | | eqid 2622 |
. . . . . . . 8
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) |
| 49 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) |
| 50 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) |
| 51 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑌)) =
(+g‘(mulGrp‘𝑌)) |
| 52 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) |
| 53 | 7, 26, 23, 48, 49, 50, 51, 52 | pwsmgp 18618 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → ((Base‘(mulGrp‘𝑌)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
| 54 | 1, 6, 53 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
| 55 | 54 | simpld 475 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴))) |
| 56 | 46 | simprd 479 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵))) |
| 57 | 56 | oveqdr 6674 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐵))𝑦)) |
| 58 | 54 | simprd 479 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴))) |
| 59 | 58 | oveqdr 6674 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐴))𝑦)) |
| 60 | 39, 40, 47, 55, 57, 59 | mhmpropd 17341 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s
𝐵) MndHom
((mulGrp‘𝑅)
↑s 𝐴))) |
| 61 | 29, 38, 60 | 3eltr4d 2716 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))) |
| 62 | 22, 61 | jca 554 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))) |
| 63 | 41, 48 | isrhm 18721 |
. 2
⊢ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))) |
| 64 | 10, 62, 63 | sylanbrc 698 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) |