MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem4 Structured version   Visualization version   GIF version

Theorem prmgaplem4 15758
Description: Lemma for prmgap 15763. (Contributed by AV, 10-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem4.a 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
Assertion
Ref Expression
prmgaplem4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5 {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ
21a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ)
3 prmssnn 15390 . . . . 5 ℙ ⊆ ℕ
4 nnssre 11024 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3612 . . . 4 ℙ ⊆ ℝ
62, 5syl6ss 3615 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ)
7 fzfid 12772 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁...𝑃) ∈ Fin)
8 breq2 4657 . . . . . . . 8 (𝑝 = 𝑖 → (𝑁 < 𝑝𝑁 < 𝑖))
9 breq1 4656 . . . . . . . 8 (𝑝 = 𝑖 → (𝑝𝑃𝑖𝑃))
108, 9anbi12d 747 . . . . . . 7 (𝑝 = 𝑖 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑖𝑖𝑃)))
1110elrab 3363 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)))
12 nnz 11399 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 prmz 15389 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1412, 13anim12i 590 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
15143adant3 1081 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
16 prmz 15389 . . . . . . . . . . 11 (𝑖 ∈ ℙ → 𝑖 ∈ ℤ)
1716adantr 481 . . . . . . . . . 10 ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ ℤ)
1815, 17anim12i 590 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
19 df-3an 1039 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
2018, 19sylibr 224 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ))
21 nnre 11027 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
235sseli 3599 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → 𝑖 ∈ ℝ)
24 ltle 10126 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑁 < 𝑖𝑁𝑖))
2522, 23, 24syl2an 494 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → (𝑁 < 𝑖𝑁𝑖))
2625anim1d 588 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃)))
2726ex 450 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
28273adant3 1081 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
2928imp32 449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁𝑖𝑖𝑃))
30 elfz2 12333 . . . . . . . 8 (𝑖 ∈ (𝑁...𝑃) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑁𝑖𝑖𝑃)))
3120, 29, 30sylanbrc 698 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → 𝑖 ∈ (𝑁...𝑃))
3231ex 450 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ (𝑁...𝑃)))
3311, 32syl5bi 232 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → 𝑖 ∈ (𝑁...𝑃)))
3433ssrdv 3609 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃))
35 ssfi 8180 . . . 4 (((𝑁...𝑃) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃)) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
367, 34, 35syl2anc 693 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
37 simp2 1062 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ ℙ)
38 prmnn 15388 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3938nnred 11035 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4039leidd 10594 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃𝑃)
4140anim1i 592 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑃𝑃𝑁 < 𝑃))
4241ancomd 467 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
43423adant1 1079 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
44 breq2 4657 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
45 breq1 4656 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑃𝑃𝑃))
4644, 45anbi12d 747 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑃𝑃𝑃)))
4746elrab 3363 . . . . 5 (𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃𝑃)))
4837, 43, 47sylanbrc 698 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)})
49 ne0i 3921 . . . 4 (𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
5048, 49syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
51 prmgaplem4.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
52 sseq1 3626 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ))
53 eleq1 2689 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin))
54 neeq1 2856 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
5552, 53, 543anbi123d 1399 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)))
5651, 55ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
576, 36, 50, 56syl3anbrc 1246 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
58 fiminre 10972 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
5957, 58syl 17 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  Fincfn 7955  cr 9935   < clt 10074  cle 10075  cn 11020  cz 11377  ...cfz 12326  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-prm 15386
This theorem is referenced by:  prmgaplem6  15760
  Copyright terms: Public domain W3C validator