Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   Unicode version

Theorem fmtnofac1 41482
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 41481. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  M  ||  (FermatNo `  N )
)  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem fmtnofac1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 11765 . . 3  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 5prm 15815 . . . . . . 7  |-  5  e.  Prime
3 dvdsprime 15400 . . . . . . 7  |-  ( ( 5  e.  Prime  /\  M  e.  NN )  ->  ( M  ||  5  <->  ( M  =  5  \/  M  =  1 ) ) )
42, 3mpan 706 . . . . . 6  |-  ( M  e.  NN  ->  ( M  ||  5  <->  ( M  =  5  \/  M  =  1 ) ) )
5 1nn0 11308 . . . . . . . . 9  |-  1  e.  NN0
65a1i 11 . . . . . . . 8  |-  ( M  =  5  ->  1  e.  NN0 )
7 simpl 473 . . . . . . . . 9  |-  ( ( M  =  5  /\  k  =  1 )  ->  M  =  5 )
8 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
k  x.  4 )  =  ( 1  x.  4 ) )
98oveq1d 6665 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( k  x.  4 )  +  1 )  =  ( ( 1  x.  4 )  +  1 ) )
109adantl 482 . . . . . . . . 9  |-  ( ( M  =  5  /\  k  =  1 )  ->  ( ( k  x.  4 )  +  1 )  =  ( ( 1  x.  4 )  +  1 ) )
117, 10eqeq12d 2637 . . . . . . . 8  |-  ( ( M  =  5  /\  k  =  1 )  ->  ( M  =  ( ( k  x.  4 )  +  1 )  <->  5  =  ( ( 1  x.  4 )  +  1 ) ) )
12 df-5 11082 . . . . . . . . . 10  |-  5  =  ( 4  +  1 )
13 4cn 11098 . . . . . . . . . . . . 13  |-  4  e.  CC
1413mulid2i 10043 . . . . . . . . . . . 12  |-  ( 1  x.  4 )  =  4
1514eqcomi 2631 . . . . . . . . . . 11  |-  4  =  ( 1  x.  4 )
1615oveq1i 6660 . . . . . . . . . 10  |-  ( 4  +  1 )  =  ( ( 1  x.  4 )  +  1 )
1712, 16eqtri 2644 . . . . . . . . 9  |-  5  =  ( ( 1  x.  4 )  +  1 )
1817a1i 11 . . . . . . . 8  |-  ( M  =  5  ->  5  =  ( ( 1  x.  4 )  +  1 ) )
196, 11, 18rspcedvd 3317 . . . . . . 7  |-  ( M  =  5  ->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) )
20 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
2120a1i 11 . . . . . . . 8  |-  ( M  =  1  ->  0  e.  NN0 )
22 simpl 473 . . . . . . . . 9  |-  ( ( M  =  1  /\  k  =  0 )  ->  M  =  1 )
23 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
k  x.  4 )  =  ( 0  x.  4 ) )
2423oveq1d 6665 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( k  x.  4 )  +  1 )  =  ( ( 0  x.  4 )  +  1 ) )
2524adantl 482 . . . . . . . . 9  |-  ( ( M  =  1  /\  k  =  0 )  ->  ( ( k  x.  4 )  +  1 )  =  ( ( 0  x.  4 )  +  1 ) )
2622, 25eqeq12d 2637 . . . . . . . 8  |-  ( ( M  =  1  /\  k  =  0 )  ->  ( M  =  ( ( k  x.  4 )  +  1 )  <->  1  =  ( ( 0  x.  4 )  +  1 ) ) )
2713mul02i 10225 . . . . . . . . . . . 12  |-  ( 0  x.  4 )  =  0
2827oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 0  x.  4 )  +  1 )  =  ( 0  +  1 )
29 0p1e1 11132 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
3028, 29eqtri 2644 . . . . . . . . . 10  |-  ( ( 0  x.  4 )  +  1 )  =  1
3130eqcomi 2631 . . . . . . . . 9  |-  1  =  ( ( 0  x.  4 )  +  1 )
3231a1i 11 . . . . . . . 8  |-  ( M  =  1  ->  1  =  ( ( 0  x.  4 )  +  1 ) )
3321, 26, 32rspcedvd 3317 . . . . . . 7  |-  ( M  =  1  ->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) )
3419, 33jaoi 394 . . . . . 6  |-  ( ( M  =  5  \/  M  =  1 )  ->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) )
354, 34syl6bi 243 . . . . 5  |-  ( M  e.  NN  ->  ( M  ||  5  ->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) ) )
36 fveq2 6191 . . . . . . . 8  |-  ( N  =  1  ->  (FermatNo `  N )  =  (FermatNo `  1 ) )
37 fmtno1 41453 . . . . . . . 8  |-  (FermatNo `  1
)  =  5
3836, 37syl6eq 2672 . . . . . . 7  |-  ( N  =  1  ->  (FermatNo `  N )  =  5 )
3938breq2d 4665 . . . . . 6  |-  ( N  =  1  ->  ( M  ||  (FermatNo `  N
)  <->  M  ||  5 ) )
40 oveq1 6657 . . . . . . . . . . . . 13  |-  ( N  =  1  ->  ( N  +  1 )  =  ( 1  +  1 ) )
41 1p1e2 11134 . . . . . . . . . . . . 13  |-  ( 1  +  1 )  =  2
4240, 41syl6eq 2672 . . . . . . . . . . . 12  |-  ( N  =  1  ->  ( N  +  1 )  =  2 )
4342oveq2d 6666 . . . . . . . . . . 11  |-  ( N  =  1  ->  (
2 ^ ( N  +  1 ) )  =  ( 2 ^ 2 ) )
44 sq2 12960 . . . . . . . . . . 11  |-  ( 2 ^ 2 )  =  4
4543, 44syl6eq 2672 . . . . . . . . . 10  |-  ( N  =  1  ->  (
2 ^ ( N  +  1 ) )  =  4 )
4645oveq2d 6666 . . . . . . . . 9  |-  ( N  =  1  ->  (
k  x.  ( 2 ^ ( N  + 
1 ) ) )  =  ( k  x.  4 ) )
4746oveq1d 6665 . . . . . . . 8  |-  ( N  =  1  ->  (
( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 )  =  ( ( k  x.  4 )  +  1 ) )
4847eqeq2d 2632 . . . . . . 7  |-  ( N  =  1  ->  ( M  =  ( (
k  x.  ( 2 ^ ( N  + 
1 ) ) )  +  1 )  <->  M  =  ( ( k  x.  4 )  +  1 ) ) )
4948rexbidv 3052 . . . . . 6  |-  ( N  =  1  ->  ( E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 )  <->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) ) )
5039, 49imbi12d 334 . . . . 5  |-  ( N  =  1  ->  (
( M  ||  (FermatNo `  N )  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) )  <->  ( M  ||  5  ->  E. k  e.  NN0  M  =  ( ( k  x.  4 )  +  1 ) ) ) )
5135, 50syl5ibr 236 . . . 4  |-  ( N  =  1  ->  ( M  e.  NN  ->  ( M  ||  (FermatNo `  N
)  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) ) ) )
52 fmtnofac2 41481 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  ->  E. n  e.  NN0  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )
53 id 22 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
54 2nn0 11309 . . . . . . . . . . . . 13  |-  2  e.  NN0
5554a1i 11 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
5653, 55nn0mulcld 11356 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  x.  2 )  e. 
NN0 )
5756adantl 482 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N )
)  /\  n  e.  NN0 )  ->  ( n  x.  2 )  e.  NN0 )
5857adantr 481 . . . . . . . . 9  |-  ( ( ( ( N  e.  ( ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N
) )  /\  n  e.  NN0 )  /\  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )  -> 
( n  x.  2 )  e.  NN0 )
59 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ( ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N
) )  /\  n  e.  NN0 )  /\  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )  ->  M  =  ( (
n  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) )
60 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  ( n  x.  2 )  ->  (
k  x.  ( 2 ^ ( N  + 
1 ) ) )  =  ( ( n  x.  2 )  x.  ( 2 ^ ( N  +  1 ) ) ) )
6160oveq1d 6665 . . . . . . . . . 10  |-  ( k  =  ( n  x.  2 )  ->  (
( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 )  =  ( ( ( n  x.  2 )  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) )
6259, 61eqeqan12d 2638 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ( ZZ>= `  2
)  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  /\  n  e.  NN0 )  /\  M  =  ( (
n  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) )  /\  k  =  ( n  x.  2 ) )  ->  ( M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 )  <->  ( (
n  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  =  ( ( ( n  x.  2 )  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) ) )
63 eluzge2nn0 11727 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
6463nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
65 add1p1 11283 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  + 
2 ) )
6664, 65syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  +  1 )  +  1 )  =  ( N  +  2 ) )
6766eqcomd 2628 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  +  2 )  =  ( ( N  + 
1 )  +  1 ) )
6867oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
2 ) )  =  ( 2 ^ (
( N  +  1 )  +  1 ) ) )
69 2cnd 11093 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  CC )
70 peano2nn0 11333 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
7163, 70syl 17 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  +  1 )  e. 
NN0 )
7269, 71expp1d 13009 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( ( N  +  1 )  +  1 ) )  =  ( ( 2 ^ ( N  +  1 ) )  x.  2 ) )
7354a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  NN0 )
7473, 71nn0expcld 13031 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
1 ) )  e. 
NN0 )
7574nn0cnd 11353 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
1 ) )  e.  CC )
7675, 69mulcomd 10061 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
2 ^ ( N  +  1 ) )  x.  2 )  =  ( 2  x.  (
2 ^ ( N  +  1 ) ) ) )
7768, 72, 763eqtrd 2660 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
2 ) )  =  ( 2  x.  (
2 ^ ( N  +  1 ) ) ) )
7877adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
2 ^ ( N  +  2 ) )  =  ( 2  x.  ( 2 ^ ( N  +  1 ) ) ) )
7978oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
n  x.  ( 2 ^ ( N  + 
2 ) ) )  =  ( n  x.  ( 2  x.  (
2 ^ ( N  +  1 ) ) ) ) )
80 nn0cn 11302 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  n  e.  CC )
8180adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  n  e.  CC )
82 2cnd 11093 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  2  e.  CC )
8375adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
2 ^ ( N  +  1 ) )  e.  CC )
8481, 82, 83mulassd 10063 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
( n  x.  2 )  x.  ( 2 ^ ( N  + 
1 ) ) )  =  ( n  x.  ( 2  x.  (
2 ^ ( N  +  1 ) ) ) ) )
8579, 84eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  n  e.  NN0 )  ->  (
n  x.  ( 2 ^ ( N  + 
2 ) ) )  =  ( ( n  x.  2 )  x.  ( 2 ^ ( N  +  1 ) ) ) )
86853ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N )
)  /\  n  e.  NN0 )  ->  ( n  x.  ( 2 ^ ( N  +  2 ) ) )  =  ( ( n  x.  2 )  x.  ( 2 ^ ( N  + 
1 ) ) ) )
8786adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  ( ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N
) )  /\  n  e.  NN0 )  /\  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )  -> 
( n  x.  (
2 ^ ( N  +  2 ) ) )  =  ( ( n  x.  2 )  x.  ( 2 ^ ( N  +  1 ) ) ) )
8887oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( N  e.  ( ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N
) )  /\  n  e.  NN0 )  /\  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )  -> 
( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 )  =  ( ( ( n  x.  2 )  x.  ( 2 ^ ( N  + 
1 ) ) )  +  1 ) )
8958, 62, 88rspcedvd 3317 . . . . . . . 8  |-  ( ( ( ( N  e.  ( ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N
) )  /\  n  e.  NN0 )  /\  M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) )
9089ex 450 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N )
)  /\  n  e.  NN0 )  ->  ( M  =  ( ( n  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 )  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) ) )
9190rexlimdva 3031 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  ->  ( E. n  e.  NN0  M  =  ( ( n  x.  (
2 ^ ( N  +  2 ) ) )  +  1 )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) ) )
9252, 91mpd 15 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) )
93923exp 1264 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( M  e.  NN  ->  ( M  ||  (FermatNo `  N )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  1 ) ) )  +  1 ) ) ) )
9451, 93jaoi 394 . . 3  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( M  e.  NN  ->  ( M  ||  (FermatNo `  N )  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) ) ) )
951, 94sylbi 207 . 2  |-  ( N  e.  NN  ->  ( M  e.  NN  ->  ( M  ||  (FermatNo `  N
)  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) ) ) )
96953imp 1256 1  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  M  ||  (FermatNo `  N )
)  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  1 ) ) )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   2c2 11070   4c4 11072   5c5 11073   NN0cn0 11292   ZZ>=cuz 11687   ^cexp 12860    || cdvds 14983   Primecprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542  df-lgs 25020  df-fmtno 41440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator