MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod1p Structured version   Visualization version   GIF version

Theorem fprod1p 14698
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
Hypotheses
Ref Expression
fprod1p.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprod1p.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprod1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fprod1p (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprod1p
StepHypRef Expression
1 fprod1p.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz1 12348 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
31, 2syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4 elfzelz 12342 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 fzsn 12383 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
75, 6syl 17 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
87ineq1d 3813 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
95zred 11482 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ltp1d 10954 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
11 fzdisj 12368 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
1210, 11syl 17 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
138, 12eqtr3d 2658 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
14 fzsplit 12367 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
153, 14syl 17 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
167uneq1d 3766 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1715, 16eqtrd 2656 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
18 fzfid 12772 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
19 fprod1p.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2013, 17, 18, 19fprodsplit 14696 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
2119ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
22 fprod1p.3 . . . . . . 7 (𝑘 = 𝑀𝐴 = 𝐵)
2322eleq1d 2686 . . . . . 6 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
2423rspcv 3305 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐵 ∈ ℂ))
253, 21, 24sylc 65 . . . 4 (𝜑𝐵 ∈ ℂ)
2622prodsn 14692 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
273, 25, 26syl2anc 693 . . 3 (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
2827oveq1d 6665 . 2 (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
2920, 28eqtrd 2656 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cz 11377  cuz 11687  ...cfz 12326  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fallfacfwd  14767  0fallfac  14768  etransclem4  40455  etransclem31  40482  etransclem35  40486
  Copyright terms: Public domain W3C validator