MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodabs Structured version   Visualization version   GIF version

Theorem fprodabs 14704
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1 𝑍 = (ℤ𝑀)
fprodabs.2 (𝜑𝑁𝑍)
fprodabs.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodabs (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodabs
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3 (𝜑𝑁𝑍)
2 fprodabs.1 . . 3 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2711 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 6658 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 14651 . . . . . 6 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴)
65fveq2d 6195 . . . . 5 (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴))
74prodeq1d 14651 . . . . 5 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
86, 7eqeq12d 2637 . . . 4 (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
98imbi2d 330 . . 3 (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))))
10 oveq2 6658 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 14651 . . . . . 6 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴)
1211fveq2d 6195 . . . . 5 (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴))
1310prodeq1d 14651 . . . . 5 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
1412, 13eqeq12d 2637 . . . 4 (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))
1514imbi2d 330 . . 3 (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))))
16 oveq2 6658 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 14651 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)
1817fveq2d 6195 . . . . 5 (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴))
1916prodeq1d 14651 . . . . 5 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
2018, 19eqeq12d 2637 . . . 4 (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))
2120imbi2d 330 . . 3 (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
22 oveq2 6658 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 14651 . . . . . 6 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
2423fveq2d 6195 . . . . 5 (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴))
2522prodeq1d 14651 . . . . 5 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
2624, 25eqeq12d 2637 . . . 4 (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
2726imbi2d 330 . . 3 (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))))
28 csbfv2g 6232 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
2928adantl 482 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
30 fzsn 12383 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3130adantl 482 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3231prodeq1d 14651 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴))
33 simpr 477 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
34 uzid 11702 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3534, 2syl6eleqr 2712 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
36 fprodabs.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3736ralrimiva 2966 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
38 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑘𝑀 / 𝑘𝐴
3938nfel1 2779 . . . . . . . . . . . . 13 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
40 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
4140eleq1d 2686 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
4239, 41rspc 3303 . . . . . . . . . . . 12 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
4337, 42mpan9 486 . . . . . . . . . . 11 ((𝜑𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4435, 43sylan2 491 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4544abscld 14175 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℝ)
4645recnd 10068 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℂ)
4729, 46eqeltrd 2701 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ)
48 prodsns 14702 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
4933, 47, 48syl2anc 693 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5032, 49eqtrd 2656 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5130prodeq1d 14651 . . . . . . . 8 (𝑀 ∈ ℤ → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
5251adantl 482 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
53 prodsns 14702 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5433, 44, 53syl2anc 693 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5552, 54eqtrd 2656 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝑀 / 𝑘𝐴)
5655fveq2d 6195 . . . . 5 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = (abs‘𝑀 / 𝑘𝐴))
5729, 50, 563eqtr4rd 2667 . . . 4 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
5857expcom 451 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
59 simp3 1063 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
60 ovex 6678 . . . . . . . . . . 11 (𝑛 + 1) ∈ V
61 csbfv2g 6232 . . . . . . . . . . 11 ((𝑛 + 1) ∈ V → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6260, 61ax-mp 5 . . . . . . . . . 10 (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴)
6362eqcomi 2631 . . . . . . . . 9 (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴)
6463a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
6559, 64oveq12d 6668 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
66 simpr 477 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
67 elfzuz 12338 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ𝑀))
6867, 2syl6eleqr 2712 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘𝑍)
6968, 36sylan2 491 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7069adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7166, 70fprodp1s 14701 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴))
7271fveq2d 6195 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)))
73 fzfid 12772 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑀...𝑛) ∈ Fin)
74 elfzuz 12338 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7574, 2syl6eleqr 2712 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
7675, 36sylan2 491 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
7776adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
7873, 77fprodcl 14682 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ)
79 peano2uz 11741 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
8079, 2syl6eleqr 2712 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
81 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑘(𝑛 + 1) / 𝑘𝐴
8281nfel1 2779 . . . . . . . . . . . . 13 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
83 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8483eleq1d 2686 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8582, 84rspc 3303 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8637, 85mpan9 486 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
8780, 86sylan2 491 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
8878, 87absmuld 14193 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
8972, 88eqtrd 2656 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
90893adant3 1081 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9170abscld 14175 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ)
9291recnd 10068 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ)
9366, 92fprodp1s 14701 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
94933adant3 1081 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
9565, 90, 943eqtr4d 2666 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
96953exp 1264 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑀) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
9796com12 32 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
9897a2d 29 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
999, 15, 21, 27, 58, 98uzind4 11746 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
1003, 99mpcom 38 1 (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  {csn 4177  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cz 11377  cuz 11687  ...cfz 12326  abscabs 13974  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem23  40474
  Copyright terms: Public domain W3C validator