Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem23 Structured version   Visualization version   GIF version

Theorem etransclem23 40474
Description: This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem23.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem23.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem23.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
etransclem23.p (𝜑𝑃 ∈ ℕ)
etransclem23.m (𝜑𝑀 ∈ ℕ)
etransclem23.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem23.lt1 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
Assertion
Ref Expression
etransclem23 (𝜑 → (abs‘𝐾) < 1)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗)

Proof of Theorem etransclem23
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem23.k . . . . . 6 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
2 etransclem23.l . . . . . . 7 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
32oveq1i 6660 . . . . . 6 (𝐿 / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
41, 3eqtri 2644 . . . . 5 𝐾 = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
54fveq2i 6194 . . . 4 (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1))))
65a1i 11 . . 3 (𝜑 → (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))))
7 fzfid 12772 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
8 etransclem23.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℤ)
98adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
10 elfznn0 12433 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1110adantl 482 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
129, 11ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
1312zcnd 11483 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
14 ere 14819 . . . . . . . . . 10 e ∈ ℝ
1514recni 10052 . . . . . . . . 9 e ∈ ℂ
1615a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
17 elfzelz 12342 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
1817zcnd 11483 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
1918adantl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2016, 19cxpcld 24454 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
2113, 20mulcld 10060 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
2215a1i 11 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ)
23 elioore 12205 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ)
2423recnd 10068 . . . . . . . . . . 11 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ)
2524adantl 482 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ)
2625negcld 10379 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ)
2722, 26cxpcld 24454 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℂ)
28 ax-resscn 9993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
30 etransclem23.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
31 etransclem23.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
3229, 30, 31etransclem8 40459 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℂ)
3332adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ)
3423adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
3533, 34ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3635adantlr 751 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3727, 36mulcld 10060 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
38 reelprrecn 10028 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ, ℂ})
40 reopn 39501 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
41 eqid 2622 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241tgioo2 22606 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4340, 42eleqtri 2699 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4443a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4530adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
46 etransclem23.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
4746nnnn0d 11351 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
4847adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℕ0)
49 etransclem6 40457 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
50 etransclem6 40457 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
5131, 49, 503eqtri 2648 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
52 0red 10041 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5317zred 11482 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
5453adantl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ)
5539, 44, 45, 48, 51, 52, 54etransclem18 40469 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
5637, 55itgcl 23550 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥 ∈ ℂ)
5721, 56mulcld 10060 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
587, 57fsumcl 14464 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
59 nnm1nn0 11334 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6030, 59syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6160faccld 13071 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6261nncnd 11036 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6361nnne0d 11065 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6458, 62, 63absdivd 14194 . . 3 (𝜑 → (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))))
6561nnred 11035 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ)
6661nnnn0d 11351 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ0)
6766nn0ge0d 11354 . . . . 5 (𝜑 → 0 ≤ (!‘(𝑃 − 1)))
6865, 67absidd 14161 . . . 4 (𝜑 → (abs‘(!‘(𝑃 − 1))) = (!‘(𝑃 − 1)))
6968oveq2d 6666 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
706, 64, 693eqtrd 2660 . 2 (𝜑 → (abs‘𝐾) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
712, 58syl5eqel 2705 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
7271, 62, 63divcld 10801 . . . . . 6 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) ∈ ℂ)
731, 72syl5eqel 2705 . . . . 5 (𝜑𝐾 ∈ ℂ)
7473abscld 14175 . . . 4 (𝜑 → (abs‘𝐾) ∈ ℝ)
7570, 74eqeltrrd 2702 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ∈ ℝ)
7646nnred 11035 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
7730nnnn0d 11351 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
7876, 77reexpcld 13025 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑃) ∈ ℝ)
79 peano2nn0 11333 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
8047, 79syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ ℕ0)
8178, 80reexpcld 13025 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
8281recnd 10068 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
8346nncnd 11036 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
8482, 83mulcomd 10061 . . . . . . . . . . . 12 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))))
8530nncnd 11036 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
86 1cnd 10056 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
8785, 86npcand 10396 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8887eqcomd 2628 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((𝑃 − 1) + 1))
8988oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)))
9080nn0cnd 11353 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℂ)
9190, 85mulcomd 10061 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) · 𝑃) = (𝑃 · (𝑀 + 1)))
9291oveq2d 6666 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = (𝑀↑(𝑃 · (𝑀 + 1))))
9383, 77, 80expmuld 13011 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = ((𝑀↑(𝑀 + 1))↑𝑃))
9483, 80, 77expmuld 13011 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑃 · (𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
9592, 93, 943eqtr3d 2664 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
9676, 80reexpcld 13025 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
9796recnd 10068 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
9897, 60expp1d 13009 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9989, 95, 983eqtr3d 2664 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
10099oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))) = (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))))
10197, 60expcld 13008 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
10283, 101, 97mul12d 10245 . . . . . . . . . . . . 13 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))))
10383, 97mulcld 10060 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
104101, 103mulcomd 10061 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
105102, 104eqtrd 2656 . . . . . . . . . . . 12 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
10684, 100, 1053eqtrd 2660 . . . . . . . . . . 11 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
107106adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
108107oveq2d 6666 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
10921abscld 14175 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
110109recnd 10068 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
111103adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
112101adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
113110, 111, 112mulassd 10063 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
114108, 113eqtr4d 2659 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
115114sumeq2dv 14433 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
116110, 111mulcld 10060 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
1177, 101, 116fsummulc1 14517 . . . . . . 7 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
118115, 117eqtr4d 2659 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
119118oveq1d 6665 . . . . 5 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))))
1207, 116fsumcl 14464 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
121120, 101, 62, 63divassd 10836 . . . . 5 (𝜑 → ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
122119, 121eqtrd 2656 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
12381adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
12476adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
125123, 124remulcld 10070 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) ∈ ℝ)
126109, 125remulcld 10070 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
1277, 126fsumrecl 14465 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
128127, 61nndivred 11069 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) ∈ ℝ)
129122, 128eqeltrrd 2702 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) ∈ ℝ)
130 1red 10055 . . 3 (𝜑 → 1 ∈ ℝ)
13158abscld 14175 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
13261nnrpd 11870 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ+)
13357abscld 14175 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1347, 133fsumrecl 14465 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1357, 57fsumabs 14533 . . . . . 6 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
13681ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
137 ioombl 23333 . . . . . . . . . . . 12 (0(,)𝑗) ∈ dom vol
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ∈ dom vol)
139 0red 10041 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ)
140 elfzle1 12344 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
141 volioo 23337 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
142139, 53, 140, 141syl3anc 1326 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
14353, 139resubcld 10458 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) ∈ ℝ)
144142, 143eqeltrd 2701 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ∈ ℝ)
145144adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ∈ ℝ)
14682adantr 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
147 iblconstmpt 40171 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
148138, 145, 146, 147syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
149136, 148itgrecl 23564 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ∈ ℝ)
150109, 149remulcld 10070 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
1517, 150fsumrecl 14465 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
15221, 56absmuld 14193 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
15356abscld 14175 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℝ)
15421absge0d 14183 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ (abs‘((𝐴𝑗) · (e↑𝑐𝑗))))
15537abscld 14175 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ℝ)
15637, 55iblabs 23595 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ (abs‘((e↑𝑐-𝑥) · (𝐹𝑥)))) ∈ 𝐿1)
157155, 156itgrecl 23564 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ∈ ℝ)
15837, 55itgabs 23601 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥)
15927, 36absmuld 14193 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) = ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))))
16027abscld 14175 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ∈ ℝ)
161 1red 10055 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
16236abscld 14175 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ∈ ℝ)
16327absge0d 14183 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(e↑𝑐-𝑥)))
16436absge0d 14183 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(𝐹𝑥)))
16514a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → e ∈ ℝ)
166 0re 10040 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
167 epos 14935 . . . . . . . . . . . . . . . . . . . . . 22 0 < e
168166, 14, 167ltleii 10160 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ e
169168a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → 0 ≤ e)
17023renegcld 10457 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → -𝑥 ∈ ℝ)
171165, 169, 170recxpcld 24469 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → (e↑𝑐-𝑥) ∈ ℝ)
172165, 169, 170cxpge0d 24470 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → 0 ≤ (e↑𝑐-𝑥))
173171, 172absidd 14161 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0(,)𝑗) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
174173adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
175171adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℝ)
176 1red 10055 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
177 0xr 10086 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
178177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ*)
17953rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ*)
180179adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ*)
181 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗))
182 ioogtlb 39717 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
183178, 180, 181, 182syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
18423adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
185184lt0neg2d 10598 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (0 < 𝑥 ↔ -𝑥 < 0))
186183, 185mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 < 0)
18714a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℝ)
188 1lt2 11194 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
189 egt2lt3 14934 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
190189simpli 474 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
191 1re 10039 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
192 2re 11090 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
193191, 192, 14lttri 10163 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 < 2 ∧ 2 < e) → 1 < e)
194188, 190, 193mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 1 < e
195194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 < e)
196170adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℝ)
197 0red 10041 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ)
198187, 195, 196, 197cxpltd 24465 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (-𝑥 < 0 ↔ (e↑𝑐-𝑥) < (e↑𝑐0)))
199186, 198mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < (e↑𝑐0))
200 cxp0 24416 . . . . . . . . . . . . . . . . . . . 20 (e ∈ ℂ → (e↑𝑐0) = 1)
20115, 200mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐0) = 1)
202199, 201breqtrd 4679 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < 1)
203175, 176, 202ltled 10185 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ≤ 1)
204174, 203eqbrtrd 4675 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
205204adantll 750 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
20628a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ℝ ⊆ ℂ)
20730ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑃 ∈ ℕ)
20847ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℕ0)
20931, 49eqtri 2644 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
21023adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
211206, 207, 208, 209, 210etransclem13 40464 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) = ∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)))
212211fveq2d 6195 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
213 nn0uz 11722 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
21423adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℝ)
215 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℝ)
216215adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℝ)
217214, 216resubcld 10458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
218217adantll 750 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
21960, 77ifcld 4131 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
220219ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
221218, 220reexpcld 13025 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
222221recnd 10068 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
223213, 208, 222fprodabs 14704 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
224 elfznn0 12433 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (0...𝑀) → ∈ ℕ0)
22524adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℂ)
226 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℂ)
227226adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℂ)
228225, 227subcld 10392 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
229228adantll 750 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
230224, 229sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
231219ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
232230, 231absexpd 14191 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
233232prodeq2dv 14653 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
234212, 223, 2333eqtrd 2660 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
235 nfv 1843 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗))
236 fzfid 12772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (0...𝑀) ∈ Fin)
237224, 228sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
238237abscld 14175 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
239238adantll 750 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
240239, 231reexpcld 13025 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
241237absge0d 14183 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
242241adantll 750 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
243239, 231, 242expge0d 13026 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
24478ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀𝑃) ∈ ℝ)
24576ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
246245, 231reexpcld 13025 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
247224, 218sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℝ)
24824adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
249224, 227sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → ∈ ℂ)
250248, 249negsubdi2d 10408 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
251250adantll 750 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
252224adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℕ0)
253252nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℝ)
254 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ∈ ℝ)
255210adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℝ)
256 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0...𝑀) → 𝑀)
257256adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀)
258197, 184, 183ltled 10185 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
259258adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
260259adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ 𝑥)
261253, 254, 245, 255, 257, 260le2subd 10647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
26283subid1d 10381 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑀 − 0) = 𝑀)
263262ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀 − 0) = 𝑀)
264261, 263breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
265251, 264eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) ≤ 𝑀)
266247, 245, 265lenegcon1d 10609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -𝑀 ≤ (𝑥))
267 elfzel2 12340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
268267zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
269268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℝ)
27053adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ)
271 iooltub 39735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
272178, 180, 181, 271syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
273 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
274273adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗𝑀)
275184, 270, 269, 272, 274ltletrd 10197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑀)
276184, 269, 275ltled 10185 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
277276adantll 750 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
278277adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥𝑀)
279252nn0ge0d 11354 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ )
280255, 254, 245, 253, 278, 279le2subd 10647 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
281280, 263breqtrd 4679 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
282247, 245absled 14169 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥)) ≤ 𝑀 ↔ (-𝑀 ≤ (𝑥) ∧ (𝑥) ≤ 𝑀)))
283266, 281, 282mpbir2and 957 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ≤ 𝑀)
284 leexp1a 12919 . . . . . . . . . . . . . . . . . . . 20 ((((abs‘(𝑥)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) ∧ (0 ≤ (abs‘(𝑥)) ∧ (abs‘(𝑥)) ≤ 𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
285239, 245, 231, 242, 283, 284syl32anc 1334 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
28646nnge1d 11063 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝑀)
287286ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 1 ≤ 𝑀)
288219nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
28977nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℤ)
290 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
291290adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
29230nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℝ)
293292lem1d 10957 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑃 − 1) ≤ 𝑃)
294293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → (𝑃 − 1) ≤ 𝑃)
295291, 294eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
296 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . 25 = 0 → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
297296adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
298292leidd 10594 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃𝑃)
299298adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → 𝑃𝑃)
300297, 299eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
301295, 300pm2.61dan 832 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
302 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)) ↔ (if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃))
303288, 289, 301, 302syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
304303ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
305245, 287, 304leexp2ad 13041 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
306240, 246, 244, 285, 305letrd 10194 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
307235, 236, 240, 243, 244, 306fprodle 14727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ∏ ∈ (0...𝑀)(𝑀𝑃))
30878recnd 10068 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀𝑃) ∈ ℂ)
309 fprodconst 14708 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑀) ∈ Fin ∧ (𝑀𝑃) ∈ ℂ) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
3107, 308, 309syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
311 hashfz0 13219 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (#‘(0...𝑀)) = (𝑀 + 1))
31247, 311syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (#‘(0...𝑀)) = (𝑀 + 1))
313312oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀𝑃)↑(#‘(0...𝑀))) = ((𝑀𝑃)↑(𝑀 + 1)))
314310, 313eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
315314ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
316307, 315breqtrd 4679 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
317234, 316eqbrtrd 4675 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
318160, 161, 162, 136, 163, 164, 205, 317lemul12ad 10966 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ (1 · ((𝑀𝑃)↑(𝑀 + 1))))
31982mulid2d 10058 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
320319ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
321318, 320breqtrd 4679 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
322159, 321eqbrtrd 4675 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
323156, 148, 155, 136, 322itgle 23576 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
324153, 157, 149, 158, 323letrd 10194 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
325153, 149, 109, 154, 324lemul2ad 10964 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
326152, 325eqbrtrd 4675 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
3277, 133, 150, 326fsumle 14531 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
328 itgconst 23585 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
329138, 145, 146, 328syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
33047nn0ge0d 11354 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
33176, 77, 330expge0d 13026 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝑀𝑃))
33278, 80, 331expge0d 13026 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
333332adantr 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
33418subid1d 10381 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) = 𝑗)
335142, 334eqtrd 2656 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = 𝑗)
336335, 273eqbrtrd 4675 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ≤ 𝑀)
337336adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ≤ 𝑀)
338145, 124, 123, 333, 337lemul2ad 10964 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))) ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
339329, 338eqbrtrd 4675 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
340149, 125, 109, 154, 339lemul2ad 10964 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
3417, 150, 126, 340fsumle 14531 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
342134, 151, 127, 327, 341letrd 10194 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
343131, 134, 127, 135, 342letrd 10194 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
344131, 127, 132, 343lediv1dd 11930 . . . 4 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))))
345344, 122breqtrd 4679 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
346 etransclem23.lt1 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
34775, 129, 130, 345, 346lelttrd 10195 . 2 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) < 1)
34870, 347eqbrtrd 4675 1 (𝜑 → (abs‘𝐾) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cz 11377  cuz 11687  (,)cioo 12175  ...cfz 12326  cexp 12860  !cfa 13060  #chash 13117  abscabs 13974  Σcsu 14416  cprod 14635  eceu 14793  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  volcvol 23232  𝐿1cibl 23386  citg 23387  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  etransclem47  40498
  Copyright terms: Public domain W3C validator