MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodss Structured version   Visualization version   GIF version

Theorem fprodss 14678
Description: Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodss.1 (𝜑𝐴𝐵)
fprodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
fprodss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fprodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fprodss
Dummy variables 𝑓 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodss.1 . . 3 (𝜑𝐴𝐵)
2 sseq2 3627 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊆ ∅))
3 ss0 3974 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
42, 3syl6bi 243 . . . 4 (𝐵 = ∅ → (𝐴𝐵𝐴 = ∅))
5 prodeq1 14639 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
6 prodeq1 14639 . . . . . . 7 (𝐵 = ∅ → ∏𝑘𝐵 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
76eqcomd 2628 . . . . . 6 (𝐵 = ∅ → ∏𝑘 ∈ ∅ 𝐶 = ∏𝑘𝐵 𝐶)
85, 7sylan9eq 2676 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
98expcom 451 . . . 4 (𝐵 = ∅ → (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
104, 9syld 47 . . 3 (𝐵 = ∅ → (𝐴𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
111, 10syl5com 31 . 2 (𝜑 → (𝐵 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
12 cnvimass 5485 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
13 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)
14 f1of 6137 . . . . . . . . . . 11 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))⟶𝐵)
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))⟶𝐵)
16 fdm 6051 . . . . . . . . . 10 (𝑓:(1...(#‘𝐵))⟶𝐵 → dom 𝑓 = (1...(#‘𝐵)))
1715, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → dom 𝑓 = (1...(#‘𝐵)))
1812, 17syl5sseq 3653 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(#‘𝐵)))
19 f1ofn 6138 . . . . . . . . . . . . 13 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓 Fn (1...(#‘𝐵)))
2013, 19syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓 Fn (1...(#‘𝐵)))
21 elpreima 6337 . . . . . . . . . . . 12 (𝑓 Fn (1...(#‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2220, 21syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2315ffvelrnda 6359 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
2423ex 450 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(#‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
2524adantrd 484 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2622, 25sylbid 230 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2726imp 445 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
28 fprodss.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2928ex 450 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
3029adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
31 eldif 3584 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
32 fprodss.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
33 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
3432, 33syl6eqel 2709 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
3531, 34sylan2br 493 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3635expr 643 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
3730, 36pm2.61d 170 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3837adantlr 751 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
39 eqid 2622 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
4038, 39fmptd 6385 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
4140ffvelrnda 6359 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
4227, 41syldan 487 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
43 eqid 2622 . . . . . . . . 9 (ℤ‘1) = (ℤ‘1)
44 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (#‘𝐵) ∈ ℕ)
45 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
4644, 45syl6eleq 2711 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (#‘𝐵) ∈ (ℤ‘1))
47 ssid 3624 . . . . . . . . . 10 (1...(#‘𝐵)) ⊆ (1...(#‘𝐵))
4847a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (1...(#‘𝐵)) ⊆ (1...(#‘𝐵)))
4943, 46, 48fprodntriv 14672 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∃𝑚 ∈ (ℤ‘1)∃𝑦(𝑦 ≠ 0 ∧ seq𝑚( · , (𝑛 ∈ (ℤ‘1) ↦ if(𝑛 ∈ (1...(#‘𝐵)), ((𝑘𝐵𝐶)‘(𝑓𝑛)), 1))) ⇝ 𝑦))
50 eldifi 3732 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(#‘𝐵)))
5150, 23sylan2 491 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
52 eldifn 3733 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
5352adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
5422adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5550adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(#‘𝐵)))
5655biantrurd 529 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑓𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5754, 56bitr4d 271 . . . . . . . . . . . 12 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
5853, 57mtbid 314 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5951, 58eldifd 3585 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
60 difss 3737 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
61 resmpt 5449 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
6260, 61ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
6362fveq1i 6192 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
64 fvres 6207 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6563, 64syl5eqr 2670 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6659, 65syl 17 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
67 1ex 10035 . . . . . . . . . . . . . . 15 1 ∈ V
6867elsn2 4211 . . . . . . . . . . . . . 14 (𝐶 ∈ {1} ↔ 𝐶 = 1)
6932, 68sylibr 224 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {1})
70 eqid 2622 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐵𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
7169, 70fmptd 6385 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
7271ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{1})
7372, 59ffvelrnd 6360 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1})
74 elsni 4194 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {1} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
7573, 74syl 17 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 1)
7666, 75eqtr3d 2658 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 1)
77 fzssuz 12382 . . . . . . . . 9 (1...(#‘𝐵)) ⊆ (ℤ‘1)
7877a1i 11 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (1...(#‘𝐵)) ⊆ (ℤ‘1))
7918, 42, 49, 76, 78prodss 14677 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = ∏𝑛 ∈ (1...(#‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
801adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
8180resmptd 5452 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
8281fveq1d 6193 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
83 fvres 6207 . . . . . . . . . 10 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
8482, 83sylan9req 2677 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
8584prodeq2dv 14653 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
86 fveq2 6191 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
87 fzfid 12772 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (1...(#‘𝐵)) ∈ Fin)
8887, 15fisuppfi 8283 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
89 f1of1 6136 . . . . . . . . . . . 12 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))–1-1𝐵)
9013, 89syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–1-1𝐵)
91 f1ores 6151 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(#‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
9290, 18, 91syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
93 f1ofo 6144 . . . . . . . . . . . . 13 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))–onto𝐵)
9413, 93syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–onto𝐵)
95 foimacnv 6154 . . . . . . . . . . . 12 ((𝑓:(1...(#‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
9694, 80, 95syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
97 f1oeq3 6129 . . . . . . . . . . 11 ((𝑓 “ (𝑓𝐴)) = 𝐴 → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9896, 97syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9992, 98mpbid 222 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
100 fvres 6207 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
101100adantl 482 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
10280sselda 3603 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
10340ffvelrnda 6359 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
104102, 103syldan 487 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
10586, 88, 99, 101, 104fprodf1o 14676 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
10685, 105eqtrd 2656 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
107 eqidd 2623 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
10886, 87, 13, 107, 103fprodf1o 14676 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑛 ∈ (1...(#‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
10979, 106, 1083eqtr4d 2666 . . . . . 6 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
110 prodfc 14675 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
111 prodfc 14675 . . . . . 6 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
112109, 110, 1113eqtr3g 2679 . . . . 5 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
113112expr 643 . . . 4 ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (𝑓:(1...(#‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
114113exlimdv 1861 . . 3 ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
115114expimpd 629 . 2 (𝜑 → (((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶))
116 fprodss.4 . . 3 (𝜑𝐵 ∈ Fin)
117 fz1f1o 14441 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)))
118116, 117syl 17 . 2 (𝜑 → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)))
11911, 115, 118mpjaod 396 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  cdif 3571  wss 3574  c0 3915  {csn 4177  cmpt 4729  ccnv 5113  dom cdm 5114  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937  cn 11020  cuz 11687  ...cfz 12326  #chash 13117  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodsplit  14696
  Copyright terms: Public domain W3C validator