| Step | Hyp | Ref
| Expression |
| 1 | | fprodss.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | | sseq2 3627 |
. . . . 5
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) |
| 3 | | ss0 3974 |
. . . . 5
⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| 4 | 2, 3 | syl6bi 243 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 5 | | prodeq1 14639 |
. . . . . 6
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
| 6 | | prodeq1 14639 |
. . . . . . 7
⊢ (𝐵 = ∅ → ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
| 7 | 6 | eqcomd 2628 |
. . . . . 6
⊢ (𝐵 = ∅ → ∏𝑘 ∈ ∅ 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| 8 | 5, 7 | sylan9eq 2676 |
. . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| 9 | 8 | expcom 451 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 10 | 4, 9 | syld 47 |
. . 3
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 11 | 1, 10 | syl5com 31 |
. 2
⊢ (𝜑 → (𝐵 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 12 | | cnvimass 5485 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
| 13 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵) |
| 14 | | f1of 6137 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(#‘𝐵))⟶𝐵) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(#‘𝐵))⟶𝐵) |
| 16 | | fdm 6051 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘𝐵))⟶𝐵 → dom 𝑓 = (1...(#‘𝐵))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → dom 𝑓 = (1...(#‘𝐵))) |
| 18 | 12, 17 | syl5sseq 3653 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ⊆ (1...(#‘𝐵))) |
| 19 | | f1ofn 6138 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → 𝑓 Fn (1...(#‘𝐵))) |
| 20 | 13, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝑓 Fn (1...(#‘𝐵))) |
| 21 | | elpreima 6337 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...(#‘𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 23 | 15 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓‘𝑛) ∈ 𝐵) |
| 24 | 23 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (1...(#‘𝐵)) → (𝑓‘𝑛) ∈ 𝐵)) |
| 25 | 24 | adantrd 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ((𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
| 26 | 22, 25 | sylbid 230 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
| 27 | 26 | imp 445 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → (𝑓‘𝑛) ∈ 𝐵) |
| 28 | | fprodss.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 29 | 28 | ex 450 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 31 | | eldif 3584 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
| 32 | | fprodss.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) |
| 33 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 34 | 32, 33 | syl6eqel 2709 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
| 35 | 31, 34 | sylan2br 493 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
| 36 | 35 | expr 643 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 37 | 30, 36 | pm2.61d 170 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 38 | 37 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 39 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) |
| 40 | 38, 39 | fmptd 6385 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
| 41 | 40 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
| 42 | 27, 41 | syldan 487 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
| 43 | | eqid 2622 |
. . . . . . . . 9
⊢
(ℤ≥‘1) =
(ℤ≥‘1) |
| 44 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (#‘𝐵) ∈
ℕ) |
| 45 | | nnuz 11723 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
| 46 | 44, 45 | syl6eleq 2711 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (#‘𝐵) ∈
(ℤ≥‘1)) |
| 47 | | ssid 3624 |
. . . . . . . . . 10
⊢
(1...(#‘𝐵))
⊆ (1...(#‘𝐵)) |
| 48 | 47 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (1...(#‘𝐵)) ⊆ (1...(#‘𝐵))) |
| 49 | 43, 46, 48 | fprodntriv 14672 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∃𝑚 ∈
(ℤ≥‘1)∃𝑦(𝑦 ≠ 0 ∧ seq𝑚( · , (𝑛 ∈ (ℤ≥‘1)
↦ if(𝑛 ∈
(1...(#‘𝐵)), ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)), 1))) ⇝ 𝑦)) |
| 50 | | eldifi 3732 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴)) → 𝑛 ∈ (1...(#‘𝐵))) |
| 51 | 50, 23 | sylan2 491 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ 𝐵) |
| 52 | | eldifn 3733 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴)) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
| 53 | 52 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
| 54 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 55 | 50 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → 𝑛 ∈ (1...(#‘𝐵))) |
| 56 | 55 | biantrurd 529 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑓‘𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 57 | 54, 56 | bitr4d 271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑛) ∈ 𝐴)) |
| 58 | 53, 57 | mtbid 314 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ (𝑓‘𝑛) ∈ 𝐴) |
| 59 | 51, 58 | eldifd 3585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴)) |
| 60 | | difss 3737 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
| 61 | | resmpt 5449 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) |
| 63 | 62 | fveq1i 6192 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) |
| 64 | | fvres 6207 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 65 | 63, 64 | syl5eqr 2670 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 66 | 59, 65 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 67 | | 1ex 10035 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
| 68 | 67 | elsn2 4211 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ {1} ↔ 𝐶 = 1) |
| 69 | 32, 68 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ {1}) |
| 70 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) |
| 71 | 69, 70 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{1}) |
| 72 | 71 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{1}) |
| 73 | 72, 59 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {1}) |
| 74 | | elsni 4194 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {1} → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
| 76 | 66, 75 | eqtr3d 2658 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
| 77 | | fzssuz 12382 |
. . . . . . . . 9
⊢
(1...(#‘𝐵))
⊆ (ℤ≥‘1) |
| 78 | 77 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (1...(#‘𝐵)) ⊆
(ℤ≥‘1)) |
| 79 | 18, 42, 49, 76, 78 | prodss 14677 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = ∏𝑛 ∈ (1...(#‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 80 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝐴 ⊆ 𝐵) |
| 81 | 80 | resmptd 5452 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 82 | 81 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
| 83 | | fvres 6207 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝐴 → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 84 | 82, 83 | sylan9req 2677 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 85 | 84 | prodeq2dv 14653 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 86 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 87 | | fzfid 12772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (1...(#‘𝐵)) ∈ Fin) |
| 88 | 87, 15 | fisuppfi 8283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ∈ Fin) |
| 89 | | f1of1 6136 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(#‘𝐵))–1-1→𝐵) |
| 90 | 13, 89 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(#‘𝐵))–1-1→𝐵) |
| 91 | | f1ores 6151 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘𝐵))–1-1→𝐵 ∧ (◡𝑓 “ 𝐴) ⊆ (1...(#‘𝐵))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
| 92 | 90, 18, 91 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
| 93 | | f1ofo 6144 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(#‘𝐵))–onto→𝐵) |
| 94 | 13, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(#‘𝐵))–onto→𝐵) |
| 95 | | foimacnv 6154 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(#‘𝐵))–onto→𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
| 96 | 94, 80, 95 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
| 97 | | f1oeq3 6129 |
. . . . . . . . . . 11
⊢ ((𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴 → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
| 99 | 92, 98 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
| 100 | | fvres 6207 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
| 101 | 100 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
| 102 | 80 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
| 103 | 40 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 104 | 102, 103 | syldan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 105 | 86, 88, 99, 101, 104 | fprodf1o 14676 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 106 | 85, 105 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 107 | | eqidd 2623 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
| 108 | 86, 87, 13, 107, 103 | fprodf1o 14676 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (1...(#‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 109 | 79, 106, 108 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 110 | | prodfc 14675 |
. . . . . 6
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶 |
| 111 | | prodfc 14675 |
. . . . . 6
⊢
∏𝑚 ∈
𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐵 𝐶 |
| 112 | 109, 110,
111 | 3eqtr3g 2679 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵)) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| 113 | 112 | expr 643 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 114 | 113 | exlimdv 1861 |
. . 3
⊢ ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 115 | 114 | expimpd 629 |
. 2
⊢ (𝜑 → (((#‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
| 116 | | fprodss.4 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 117 | | fz1f1o 14441 |
. . 3
⊢ (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵))) |
| 118 | 116, 117 | syl 17 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto→𝐵))) |
| 119 | 11, 115, 118 | mpjaod 396 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |