| Step | Hyp | Ref
| Expression |
| 1 | | 2on 7568 |
. . . . 5
⊢
2𝑜 ∈ On |
| 2 | | xpexg 6960 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On)
→ (𝐼 ×
2𝑜) ∈ V) |
| 3 | 1, 2 | mpan2 707 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → (𝐼 × 2𝑜) ∈
V) |
| 4 | | frgpmhm.m |
. . . . 5
⊢ 𝑀 = (freeMnd‘(𝐼 ×
2𝑜)) |
| 5 | 4 | frmdmnd 17396 |
. . . 4
⊢ ((𝐼 × 2𝑜)
∈ V → 𝑀 ∈
Mnd) |
| 6 | 3, 5 | syl 17 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 7 | | frgpmhm.g |
. . . . 5
⊢ 𝐺 = (freeGrp‘𝐼) |
| 8 | 7 | frgpgrp 18175 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 9 | | grpmnd 17429 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 11 | 6, 10 | jca 554 |
. 2
⊢ (𝐼 ∈ 𝑉 → (𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd)) |
| 12 | | frgpmhm.w |
. . . . . . . . . 10
⊢ 𝑊 = (Base‘𝑀) |
| 13 | 4, 12 | frmdbas 17389 |
. . . . . . . . 9
⊢ ((𝐼 × 2𝑜)
∈ V → 𝑊 = Word
(𝐼 ×
2𝑜)) |
| 14 | | wrdexg 13315 |
. . . . . . . . . 10
⊢ ((𝐼 × 2𝑜)
∈ V → Word (𝐼
× 2𝑜) ∈ V) |
| 15 | | fvi 6255 |
. . . . . . . . . 10
⊢ (Word
(𝐼 ×
2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word
(𝐼 ×
2𝑜)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ ((𝐼 × 2𝑜)
∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word
(𝐼 ×
2𝑜)) |
| 17 | 13, 16 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝐼 × 2𝑜)
∈ V → 𝑊 = ( I
‘Word (𝐼 ×
2𝑜))) |
| 18 | 3, 17 | syl 17 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → 𝑊 = ( I ‘Word (𝐼 ×
2𝑜))) |
| 19 | 18 | eleq2d 2687 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ( I ‘Word (𝐼 ×
2𝑜)))) |
| 20 | 19 | biimpa 501 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 ×
2𝑜))) |
| 21 | | frgpmhm.r |
. . . . . 6
⊢ ∼ = (
~FG ‘𝐼) |
| 22 | | eqid 2622 |
. . . . . 6
⊢ ( I
‘Word (𝐼 ×
2𝑜)) = ( I ‘Word (𝐼 ×
2𝑜)) |
| 23 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 24 | 7, 21, 22, 23 | frgpeccl 18174 |
. . . . 5
⊢ (𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))
→ [𝑥] ∼ ∈
(Base‘𝐺)) |
| 25 | 20, 24 | syl 17 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) → [𝑥] ∼ ∈
(Base‘𝐺)) |
| 26 | | frgpmhm.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑊 ↦ [𝑥] ∼ ) |
| 27 | 25, 26 | fmptd 6385 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐹:𝑊⟶(Base‘𝐺)) |
| 28 | 22, 21 | efger 18131 |
. . . . . . . 8
⊢ ∼ Er ( I
‘Word (𝐼 ×
2𝑜)) |
| 29 | | ereq2 7750 |
. . . . . . . . 9
⊢ (𝑊 = ( I ‘Word (𝐼 × 2𝑜))
→ ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘Word
(𝐼 ×
2𝑜)))) |
| 30 | 18, 29 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘Word
(𝐼 ×
2𝑜)))) |
| 31 | 28, 30 | mpbiri 248 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → ∼ Er 𝑊) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ∼ Er 𝑊) |
| 33 | | fvex 6201 |
. . . . . . . 8
⊢
(Base‘𝑀)
∈ V |
| 34 | 12, 33 | eqeltri 2697 |
. . . . . . 7
⊢ 𝑊 ∈ V |
| 35 | 34 | a1i 11 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → 𝑊 ∈ V) |
| 36 | 32, 35, 26 | divsfval 16207 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] ∼ ) |
| 37 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 38 | 4, 12, 37 | frmdadd 17392 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (𝑎(+g‘𝑀)𝑏) = (𝑎 ++ 𝑏)) |
| 39 | 38 | adantl 482 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝑎(+g‘𝑀)𝑏) = (𝑎 ++ 𝑏)) |
| 40 | 39 | fveq2d 6195 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝐹‘(𝑎(+g‘𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏))) |
| 41 | 32, 35, 26 | divsfval 16207 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝐹‘𝑎) = [𝑎] ∼ ) |
| 42 | 32, 35, 26 | divsfval 16207 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝐹‘𝑏) = [𝑏] ∼ ) |
| 43 | 41, 42 | oveq12d 6668 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏)) = ([𝑎] ∼
(+g‘𝐺)[𝑏] ∼ )) |
| 44 | 18 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ 𝑊 ↔ 𝑎 ∈ ( I ‘Word (𝐼 ×
2𝑜)))) |
| 45 | 18 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → (𝑏 ∈ 𝑊 ↔ 𝑏 ∈ ( I ‘Word (𝐼 ×
2𝑜)))) |
| 46 | 44, 45 | anbi12d 747 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 ×
2𝑜))))) |
| 47 | 46 | biimpa 501 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 ×
2𝑜)))) |
| 48 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 49 | 22, 7, 21, 48 | frgpadd 18176 |
. . . . . . 7
⊢ ((𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜))
∧ 𝑏 ∈ ( I
‘Word (𝐼 ×
2𝑜))) → ([𝑎] ∼
(+g‘𝐺)[𝑏] ∼ ) = [(𝑎 ++ 𝑏)] ∼ ) |
| 50 | 47, 49 | syl 17 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ([𝑎] ∼
(+g‘𝐺)[𝑏] ∼ ) = [(𝑎 ++ 𝑏)] ∼ ) |
| 51 | 43, 50 | eqtrd 2656 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏)) = [(𝑎 ++ 𝑏)] ∼ ) |
| 52 | 36, 40, 51 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝐹‘(𝑎(+g‘𝑀)𝑏)) = ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏))) |
| 53 | 52 | ralrimivva 2971 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ∀𝑎 ∈ 𝑊 ∀𝑏 ∈ 𝑊 (𝐹‘(𝑎(+g‘𝑀)𝑏)) = ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏))) |
| 54 | 34 | a1i 11 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝑊 ∈ V) |
| 55 | 31, 54, 26 | divsfval 16207 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → (𝐹‘∅) = [∅] ∼
) |
| 56 | 7, 21 | frgp0 18173 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ Grp ∧ [∅] ∼ =
(0g‘𝐺))) |
| 57 | 56 | simprd 479 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → [∅] ∼ =
(0g‘𝐺)) |
| 58 | 55, 57 | eqtrd 2656 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (𝐹‘∅) = (0g‘𝐺)) |
| 59 | 27, 53, 58 | 3jca 1242 |
. 2
⊢ (𝐼 ∈ 𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎 ∈ 𝑊 ∀𝑏 ∈ 𝑊 (𝐹‘(𝑎(+g‘𝑀)𝑏)) = ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏)) ∧ (𝐹‘∅) = (0g‘𝐺))) |
| 60 | 4 | frmd0 17397 |
. . 3
⊢ ∅ =
(0g‘𝑀) |
| 61 | | eqid 2622 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 62 | 12, 23, 37, 48, 60, 61 | ismhm 17337 |
. 2
⊢ (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎 ∈ 𝑊 ∀𝑏 ∈ 𝑊 (𝐹‘(𝑎(+g‘𝑀)𝑏)) = ((𝐹‘𝑎)(+g‘𝐺)(𝐹‘𝑏)) ∧ (𝐹‘∅) = (0g‘𝐺)))) |
| 63 | 11, 59, 62 | sylanbrc 698 |
1
⊢ (𝐼 ∈ 𝑉 → 𝐹 ∈ (𝑀 MndHom 𝐺)) |