MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdgsum Structured version   Visualization version   GIF version

Theorem frmdgsum 17399
Description: Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdgsum ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)

Proof of Theorem frmdgsum
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5280 . . . . . . 7 (𝑥 = ∅ → (𝑈𝑥) = (𝑈 ∘ ∅))
2 co02 5649 . . . . . . 7 (𝑈 ∘ ∅) = ∅
31, 2syl6eq 2672 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = ∅)
43oveq2d 6666 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg ∅))
5 id 22 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
64, 5eqeq12d 2637 . . . 4 (𝑥 = ∅ → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg ∅) = ∅))
76imbi2d 330 . . 3 (𝑥 = ∅ → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg ∅) = ∅)))
8 coeq2 5280 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98oveq2d 6666 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑦)))
10 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2637 . . . 4 (𝑥 = 𝑦 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑦)) = 𝑦))
1211imbi2d 330 . . 3 (𝑥 = 𝑦 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦)))
13 coeq2 5280 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑈𝑥) = (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)))
1413oveq2d 6666 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))))
15 id 22 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 = (𝑦 ++ ⟨“𝑧”⟩))
1614, 15eqeq12d 2637 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
1716imbi2d 330 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
18 coeq2 5280 . . . . . 6 (𝑥 = 𝑊 → (𝑈𝑥) = (𝑈𝑊))
1918oveq2d 6666 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑊)))
20 id 22 . . . . 5 (𝑥 = 𝑊𝑥 = 𝑊)
2119, 20eqeq12d 2637 . . . 4 (𝑥 = 𝑊 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑊)) = 𝑊))
2221imbi2d 330 . . 3 (𝑥 = 𝑊 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊)))
23 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
2423frmd0 17397 . . . . 5 ∅ = (0g𝑀)
2524gsum0 17278 . . . 4 (𝑀 Σg ∅) = ∅
2625a1i 11 . . 3 (𝐼𝑉 → (𝑀 Σg ∅) = ∅)
27 oveq1 6657 . . . . . 6 ((𝑀 Σg (𝑈𝑦)) = 𝑦 → ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩))
28 simprl 794 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑦 ∈ Word 𝐼)
29 simprr 796 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑧𝐼)
3029s1cld 13383 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ Word 𝐼)
31 frmdgsum.u . . . . . . . . . . . . 13 𝑈 = (varFMnd𝐼)
3231vrmdf 17395 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
3332adantr 481 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑈:𝐼⟶Word 𝐼)
34 ccatco 13581 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐼 ∧ ⟨“𝑧”⟩ ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
3528, 30, 33, 34syl3anc 1326 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
36 s1co 13579 . . . . . . . . . . . . 13 ((𝑧𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3729, 33, 36syl2anc 693 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3831vrmdval 17394 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑧𝐼) → (𝑈𝑧) = ⟨“𝑧”⟩)
3938adantrl 752 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑧) = ⟨“𝑧”⟩)
4039s1eqd 13381 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“(𝑈𝑧)”⟩ = ⟨“⟨“𝑧”⟩”⟩)
4137, 40eqtrd 2656 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“⟨“𝑧”⟩”⟩)
4241oveq2d 6666 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4335, 42eqtrd 2656 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4443oveq2d 6666 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)))
4523frmdmnd 17396 . . . . . . . . . . 11 (𝐼𝑉𝑀 ∈ Mnd)
4645adantr 481 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑀 ∈ Mnd)
47 wrdco 13577 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈𝑦) ∈ Word Word 𝐼)
4828, 33, 47syl2anc 693 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word Word 𝐼)
49 eqid 2622 . . . . . . . . . . . . . 14 (Base‘𝑀) = (Base‘𝑀)
5023, 49frmdbas 17389 . . . . . . . . . . . . 13 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
5150adantr 481 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (Base‘𝑀) = Word 𝐼)
52 wrdeq 13327 . . . . . . . . . . . 12 ((Base‘𝑀) = Word 𝐼 → Word (Base‘𝑀) = Word Word 𝐼)
5351, 52syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → Word (Base‘𝑀) = Word Word 𝐼)
5448, 53eleqtrrd 2704 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word (Base‘𝑀))
5530, 51eleqtrrd 2704 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ (Base‘𝑀))
5655s1cld 13383 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀))
57 eqid 2622 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
5849, 57gsumccat 17378 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀) ∧ ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
5946, 54, 56, 58syl3anc 1326 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
6049gsumws1 17376 . . . . . . . . . . . 12 (⟨“𝑧”⟩ ∈ (Base‘𝑀) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6155, 60syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6261oveq2d 6666 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩))
6349gsumwcl 17377 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6446, 54, 63syl2anc 693 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6523, 49, 57frmdadd 17392 . . . . . . . . . . 11 (((𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀) ∧ ⟨“𝑧”⟩ ∈ (Base‘𝑀)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6664, 55, 65syl2anc 693 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6762, 66eqtrd 2656 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6859, 67eqtrd 2656 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6944, 68eqtrd 2656 . . . . . . 7 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
7069eqeq1d 2624 . . . . . 6 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩) ↔ ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩)))
7127, 70syl5ibr 236 . . . . 5 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
7271expcom 451 . . . 4 ((𝑦 ∈ Word 𝐼𝑧𝐼) → (𝐼𝑉 → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
7372a2d 29 . . 3 ((𝑦 ∈ Word 𝐼𝑧𝐼) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦) → (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
747, 12, 17, 22, 26, 73wrdind 13476 . 2 (𝑊 ∈ Word 𝐼 → (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊))
7574impcom 446 1 ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  c0 3915  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101  Mndcmnd 17294  freeMndcfrmd 17384  varFMndcvrmd 17385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-vrmd 17387
This theorem is referenced by:  frmdss2  17400  frmdup3lem  17403  frgpup3lem  18190
  Copyright terms: Public domain W3C validator