MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumlt Structured version   Visualization version   GIF version

Theorem fsumlt 14532
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumlt.1 (𝜑𝐴 ∈ Fin)
fsumlt.2 (𝜑𝐴 ≠ ∅)
fsumlt.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumlt.4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fsumlt.5 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
Assertion
Ref Expression
fsumlt (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumlt
StepHypRef Expression
1 fsumlt.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 fsumlt.2 . . . . 5 (𝜑𝐴 ≠ ∅)
3 fsumlt.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
4 fsumlt.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumlt.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
6 difrp 11868 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
74, 5, 6syl2anc 693 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
83, 7mpbid 222 . . . . 5 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ ℝ+)
91, 2, 8fsumrpcl 14468 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) ∈ ℝ+)
109rpgt0d 11875 . . 3 (𝜑 → 0 < Σ𝑘𝐴 (𝐶𝐵))
115recnd 10068 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
124recnd 10068 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
131, 11, 12fsumsub 14520 . . 3 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) = (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
1410, 13breqtrd 4679 . 2 (𝜑 → 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
151, 4fsumrecl 14465 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
161, 5fsumrecl 14465 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℝ)
1715, 16posdifd 10614 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶 ↔ 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵)))
1814, 17mpbird 247 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wne 2794  c0 3915   class class class wbr 4653  (class class class)co 6650  Fincfn 7955  cr 9935  0cc0 9936   < clt 10074  cmin 10266  +crp 11832  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  lebnumlem3  22762  rrndstprj2  33630  stoweidlem11  40228  stoweidlem26  40243  fourierdlem73  40396  rrndistlt  40510  hoiqssbllem2  40837
  Copyright terms: Public domain W3C validator