Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem11 Structured version   Visualization version   GIF version

Theorem stoweidlem11 40228
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem11.1 (𝜑𝑁 ∈ ℕ)
stoweidlem11.2 (𝜑𝑡𝑇)
stoweidlem11.3 (𝜑𝑗 ∈ (1...𝑁))
stoweidlem11.4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem11.5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
stoweidlem11.6 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
stoweidlem11.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem11.8 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem11 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Distinct variable groups:   𝑖,𝑗   𝑡,𝑖,𝐸   𝑖,𝑁,𝑡   𝜑,𝑖   𝑡,𝑇   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝑇(𝑖,𝑗)   𝐸(𝑗)   𝑁(𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem11
StepHypRef Expression
1 stoweidlem11.2 . . 3 (𝜑𝑡𝑇)
2 sumex 14418 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V
3 eqid 2622 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
43fvmpt2 6291 . . 3 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
51, 2, 4sylancl 694 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
6 fzfid 12772 . . . 4 (𝜑 → (0...𝑁) ∈ Fin)
7 stoweidlem11.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
87rpred 11872 . . . . . 6 (𝜑𝐸 ∈ ℝ)
98adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
10 stoweidlem11.4 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
111adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
1210, 11ffvelrnd 6360 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
139, 12remulcld 10070 . . . 4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
146, 13fsumrecl 14465 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
15 stoweidlem11.3 . . . . . . . . 9 (𝜑𝑗 ∈ (1...𝑁))
16 elfzuz 12338 . . . . . . . . 9 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (ℤ‘1))
1715, 16syl 17 . . . . . . . 8 (𝜑𝑗 ∈ (ℤ‘1))
18 eluz2 11693 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
1917, 18sylib 208 . . . . . . 7 (𝜑 → (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
2019simp2d 1074 . . . . . 6 (𝜑𝑗 ∈ ℤ)
2120zred 11482 . . . . 5 (𝜑𝑗 ∈ ℝ)
228, 21remulcld 10070 . . . 4 (𝜑 → (𝐸 · 𝑗) ∈ ℝ)
23 stoweidlem11.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnred 11035 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
2524, 21resubcld 10458 . . . . . 6 (𝜑 → (𝑁𝑗) ∈ ℝ)
26 1red 10055 . . . . . 6 (𝜑 → 1 ∈ ℝ)
2725, 26readdcld 10069 . . . . 5 (𝜑 → ((𝑁𝑗) + 1) ∈ ℝ)
288, 23nndivred 11069 . . . . . 6 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
298, 28remulcld 10070 . . . . 5 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
3027, 29remulcld 10070 . . . 4 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))) ∈ ℝ)
3122, 30readdcld 10069 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
32 3re 11094 . . . . . . 7 3 ∈ ℝ
3332a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
34 3ne0 11115 . . . . . . 7 3 ≠ 0
3534a1i 11 . . . . . 6 (𝜑 → 3 ≠ 0)
3633, 35rereccld 10852 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
3721, 36readdcld 10069 . . . 4 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
3837, 8remulcld 10070 . . 3 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
39 fzfid 12772 . . . . . 6 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
408adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝐸 ∈ ℝ)
41 elfzelz 12342 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
42 peano2zm 11420 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
4315, 41, 423syl 18 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℤ)
4423nnzd 11481 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4521, 26resubcld 10458 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ∈ ℝ)
4621lem1d 10957 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ≤ 𝑗)
47 elfzuz3 12339 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
48 eluzle 11700 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑗) → 𝑗𝑁)
4915, 47, 483syl 18 . . . . . . . . . . . 12 (𝜑𝑗𝑁)
5045, 21, 24, 46, 49letrd 10194 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ≤ 𝑁)
51 eluz2 11693 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑗 − 1)) ↔ ((𝑗 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑗 − 1) ≤ 𝑁))
5243, 44, 50, 51syl3anbrc 1246 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(𝑗 − 1)))
53 fzss2 12381 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝑗 − 1)) → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5452, 53syl 17 . . . . . . . . 9 (𝜑 → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5554sselda 3603 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝑖 ∈ (0...𝑁))
5655, 12syldan 487 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
5740, 56remulcld 10070 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5839, 57fsumrecl 14465 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5958, 30readdcld 10069 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
6021ltm1d 10956 . . . . . . 7 (𝜑 → (𝑗 − 1) < 𝑗)
61 fzdisj 12368 . . . . . . 7 ((𝑗 − 1) < 𝑗 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
6260, 61syl 17 . . . . . 6 (𝜑 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
63 fzssp1 12384 . . . . . . . . . 10 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
6423nncnd 11036 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
65 1cnd 10056 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
6664, 65npcand 10396 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6766oveq2d 6666 . . . . . . . . . 10 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
6863, 67syl5sseq 3653 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
69 1zzd 11408 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
70 fzsubel 12377 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7169, 44, 20, 69, 70syl22anc 1327 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7215, 71mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
73 1m1e0 11089 . . . . . . . . . . 11 (1 − 1) = 0
7473oveq1i 6660 . . . . . . . . . 10 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
7572, 74syl6eleq 2711 . . . . . . . . 9 (𝜑 → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
7668, 75sseldd 3604 . . . . . . . 8 (𝜑 → (𝑗 − 1) ∈ (0...𝑁))
77 fzsplit 12367 . . . . . . . 8 ((𝑗 − 1) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7876, 77syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7920zcnd 11483 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
8079, 65npcand 10396 . . . . . . . . 9 (𝜑 → ((𝑗 − 1) + 1) = 𝑗)
8180oveq1d 6665 . . . . . . . 8 (𝜑 → (((𝑗 − 1) + 1)...𝑁) = (𝑗...𝑁))
8281uneq2d 3767 . . . . . . 7 (𝜑 → ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
8378, 82eqtrd 2656 . . . . . 6 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
847rpcnd 11874 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
8584adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
8612recnd 10068 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℂ)
8785, 86mulcld 10060 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
8862, 83, 6, 87fsumsplit 14471 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
89 fzfid 12772 . . . . . . 7 (𝜑 → (𝑗...𝑁) ∈ Fin)
908adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
91 0zd 11389 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
92 0red 10041 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
93 0le1 10551 . . . . . . . . . . . . . . 15 0 ≤ 1
9493a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
9519simp3d 1075 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑗)
9692, 26, 21, 94, 95letrd 10194 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑗)
97 eluz2 11693 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
9891, 20, 96, 97syl3anbrc 1246 . . . . . . . . . . . 12 (𝜑𝑗 ∈ (ℤ‘0))
99 fzss1 12380 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘0) → (𝑗...𝑁) ⊆ (0...𝑁))
10098, 99syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗...𝑁) ⊆ (0...𝑁))
101100sselda 3603 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
102101, 10syldan 487 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
1031adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
104102, 103ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
10590, 104remulcld 10070 . . . . . . 7 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
10689, 105fsumrecl 14465 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
107 eluzfz2 12349 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑗) → 𝑁 ∈ (𝑗...𝑁))
108 ne0i 3921 . . . . . . . . 9 (𝑁 ∈ (𝑗...𝑁) → (𝑗...𝑁) ≠ ∅)
10915, 47, 107, 1084syl 19 . . . . . . . 8 (𝜑 → (𝑗...𝑁) ≠ ∅)
11023adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℕ)
11190, 110nndivred 11069 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 / 𝑁) ∈ ℝ)
11290, 111remulcld 10070 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
113 stoweidlem11.6 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
1147rpgt0d 11875 . . . . . . . . . . 11 (𝜑 → 0 < 𝐸)
115114adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 0 < 𝐸)
116 ltmul2 10874 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ (𝐸 / 𝑁) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
117104, 111, 90, 115, 116syl112anc 1330 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
118113, 117mpbid 222 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁)))
11989, 109, 105, 112, 118fsumlt 14532 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)))
12023nnne0d 11065 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12184, 64, 120divcld 10801 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
12284, 121mulcld 10060 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℂ)
123 fsumconst 14522 . . . . . . . . 9 (((𝑗...𝑁) ∈ Fin ∧ (𝐸 · (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((#‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
12489, 122, 123syl2anc 693 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((#‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
125 hashfz 13214 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑗) → (#‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
12615, 47, 1253syl 18 . . . . . . . . 9 (𝜑 → (#‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
127126oveq1d 6665 . . . . . . . 8 (𝜑 → ((#‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
128124, 127eqtrd 2656 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
129119, 128breqtrd 4679 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
130106, 30, 58, 129ltadd2dd 10196 . . . . 5 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
13188, 130eqbrtrd 4675 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
132 stoweidlem11.5 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
13355, 132syldan 487 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ≤ 1)
134 1red 10055 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 1 ∈ ℝ)
135114adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 < 𝐸)
136 lemul2 10876 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
13756, 134, 40, 135, 136syl112anc 1330 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
138133, 137mpbid 222 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1))
13984mulid1d 10057 . . . . . . . . 9 (𝜑 → (𝐸 · 1) = 𝐸)
140139adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · 1) = 𝐸)
141138, 140breqtrd 4679 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ 𝐸)
14239, 57, 40, 141fsumle 14531 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ Σ𝑖 ∈ (0...(𝑗 − 1))𝐸)
143 fsumconst 14522 . . . . . . . 8 (((0...(𝑗 − 1)) ∈ Fin ∧ 𝐸 ∈ ℂ) → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((#‘(0...(𝑗 − 1))) · 𝐸))
14439, 84, 143syl2anc 693 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((#‘(0...(𝑗 − 1))) · 𝐸))
145 0z 11388 . . . . . . . . . . 11 0 ∈ ℤ
146 1e0p1 11552 . . . . . . . . . . . . 13 1 = (0 + 1)
147146fveq2i 6194 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
14817, 147syl6eleq 2711 . . . . . . . . . . 11 (𝜑𝑗 ∈ (ℤ‘(0 + 1)))
149 eluzp1m1 11711 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑗 ∈ (ℤ‘(0 + 1))) → (𝑗 − 1) ∈ (ℤ‘0))
150145, 148, 149sylancr 695 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ (ℤ‘0))
151 hashfz 13214 . . . . . . . . . 10 ((𝑗 − 1) ∈ (ℤ‘0) → (#‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
152150, 151syl 17 . . . . . . . . 9 (𝜑 → (#‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
15379, 65subcld 10392 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℂ)
154153subid1d 10381 . . . . . . . . . 10 (𝜑 → ((𝑗 − 1) − 0) = (𝑗 − 1))
155154oveq1d 6665 . . . . . . . . 9 (𝜑 → (((𝑗 − 1) − 0) + 1) = ((𝑗 − 1) + 1))
156152, 155, 803eqtrd 2660 . . . . . . . 8 (𝜑 → (#‘(0...(𝑗 − 1))) = 𝑗)
157156oveq1d 6665 . . . . . . 7 (𝜑 → ((#‘(0...(𝑗 − 1))) · 𝐸) = (𝑗 · 𝐸))
15879, 84mulcomd 10061 . . . . . . 7 (𝜑 → (𝑗 · 𝐸) = (𝐸 · 𝑗))
159144, 157, 1583eqtrd 2660 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = (𝐸 · 𝑗))
160142, 159breqtrd 4679 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 𝑗))
16158, 22, 30, 160leadd1dd 10641 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16214, 59, 31, 131, 161ltletrd 10197 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
1638, 8remulcld 10070 . . . . 5 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
16422, 163readdcld 10069 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) ∈ ℝ)
16564, 79subcld 10392 . . . . . . . 8 (𝜑 → (𝑁𝑗) ∈ ℂ)
166165, 65addcld 10059 . . . . . . 7 (𝜑 → ((𝑁𝑗) + 1) ∈ ℂ)
16784, 166, 121mul12d 10245 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
168167oveq2d 6666 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) = ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16927, 28remulcld 10070 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ∈ ℝ)
1708, 169remulcld 10070 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ∈ ℝ)
171166, 84, 64, 120div12d 10837 . . . . . . . 8 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) = (𝐸 · (((𝑁𝑗) + 1) / 𝑁)))
17226, 21resubcld 10458 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ∈ ℝ)
173 elfzle1 12344 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
17415, 173syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑗)
17526, 21suble0d 10618 . . . . . . . . . . . . . . 15 (𝜑 → ((1 − 𝑗) ≤ 0 ↔ 1 ≤ 𝑗))
176174, 175mpbird 247 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ≤ 0)
177172, 92, 24, 176leadd2dd 10642 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) ≤ (𝑁 + 0))
17864, 65, 79addsub12d 10415 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + (1 − 𝑗)) = (1 + (𝑁𝑗)))
17965, 165addcomd 10238 . . . . . . . . . . . . . 14 (𝜑 → (1 + (𝑁𝑗)) = ((𝑁𝑗) + 1))
180178, 179eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) = ((𝑁𝑗) + 1))
18164addid1d 10236 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 0) = 𝑁)
182177, 180, 1813brtr3d 4684 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑗) + 1) ≤ 𝑁)
18323nngt0d 11064 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
184 lediv1 10888 . . . . . . . . . . . . 13 ((((𝑁𝑗) + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
18527, 24, 24, 183, 184syl112anc 1330 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
186182, 185mpbid 222 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁))
18764, 120dividd 10799 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑁) = 1)
188186, 187breqtrd 4679 . . . . . . . . . 10 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ 1)
18927, 23nndivred 11069 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ∈ ℝ)
190189, 26, 7lemul2d 11916 . . . . . . . . . 10 (𝜑 → ((((𝑁𝑗) + 1) / 𝑁) ≤ 1 ↔ (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1)))
191188, 190mpbid 222 . . . . . . . . 9 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1))
192191, 139breqtrd 4679 . . . . . . . 8 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ 𝐸)
193171, 192eqbrtrd 4675 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸)
194169, 8, 7lemul2d 11916 . . . . . . 7 (𝜑 → ((((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸 ↔ (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸)))
195193, 194mpbid 222 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸))
196170, 163, 22, 195leadd2dd 10642 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
197168, 196eqbrtrrd 4677 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
19884, 79mulcomd 10061 . . . . . . 7 (𝜑 → (𝐸 · 𝑗) = (𝑗 · 𝐸))
199198oveq1d 6665 . . . . . 6 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
20079, 84, 84adddird 10065 . . . . . 6 (𝜑 → ((𝑗 + 𝐸) · 𝐸) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
201199, 200eqtr4d 2659 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 + 𝐸) · 𝐸))
20221, 8readdcld 10069 . . . . . 6 (𝜑 → (𝑗 + 𝐸) ∈ ℝ)
203 stoweidlem11.8 . . . . . . 7 (𝜑𝐸 < (1 / 3))
2048, 36, 21, 203ltadd2dd 10196 . . . . . 6 (𝜑 → (𝑗 + 𝐸) < (𝑗 + (1 / 3)))
205202, 37, 7, 204ltmul1dd 11927 . . . . 5 (𝜑 → ((𝑗 + 𝐸) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
206201, 205eqbrtrd 4675 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) < ((𝑗 + (1 / 3)) · 𝐸))
20731, 164, 38, 197, 206lelttrd 10195 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) < ((𝑗 + (1 / 3)) · 𝐸))
20814, 31, 38, 162, 207lttrd 10198 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝑗 + (1 / 3)) · 𝐸))
2095, 208eqbrtrd 4675 1 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  3c3 11071  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  #chash 13117  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  stoweidlem34  40251
  Copyright terms: Public domain W3C validator