MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1 Structured version   Visualization version   GIF version

Theorem numclwwlk1 27231
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but only for finite graphs! (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
numclwwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem numclwwlk1
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . 3 (𝑋𝐶𝑁) ∈ V
2 rusgrusgr 26460 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph )
32ad2antlr 763 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USGraph )
4 simprl 794 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
5 simprr 796 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘3))
6 extwwlkfab.v . . . . 5 𝑉 = (Vtx‘𝐺)
7 extwwlkfab.f . . . . 5 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
8 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
96, 7, 8numclwlk1lem2 27230 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
103, 4, 5, 9syl3anc 1326 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
11 hasheqf1oi 13140 . . 3 ((𝑋𝐶𝑁) ∈ V → (∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) → (#‘(𝑋𝐶𝑁)) = (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))))
121, 10, 11mpsyl 68 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
13 simpll 790 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ∈ Fin)
14 uz3m2nn 11731 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
1514adantl 482 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ)
1615adantl 482 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
177, 6numclwwlkffin 27214 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
1813, 4, 16, 17syl3anc 1326 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
196finrusgrfusgr 26461 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
2019ancoms 469 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph )
21 fusgrfis 26222 . . . . . 6 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2220, 21syl 17 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin)
2322adantr 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (Edg‘𝐺) ∈ Fin)
24 eqid 2622 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
256, 24nbusgrfi 26276 . . . 4 ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
263, 23, 4, 25syl3anc 1326 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
27 hashxp 13221 . . 3 (((𝑋𝐹(𝑁 − 2)) ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))))
2818, 26, 27syl2anc 693 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))))
296rusgrpropnb 26479 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾))
30 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
3130fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (#‘(𝐺 NeighbVtx 𝑥)) = (#‘(𝐺 NeighbVtx 𝑋)))
3231eqeq1d 2624 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((#‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3332rspccv 3306 . . . . . . . . . 10 (∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
34333ad2ant3 1084 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3529, 34syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾 → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3635adantl 482 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3736com12 32 . . . . . 6 (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3837adantr 481 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3938impcom 446 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾)
4039oveq2d 6666 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · 𝐾))
41 hashcl 13147 . . . . 5 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0)
42 nn0cn 11302 . . . . 5 ((#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0 → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
4318, 41, 423syl 18 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
4420adantr 481 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph )
45 simplr 792 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
46 ne0i 3921 . . . . . . . 8 (𝑋𝑉𝑉 ≠ ∅)
4746adantr 481 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
4847adantl 482 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
496frusgrnn0 26467 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
5044, 45, 48, 49syl3anc 1326 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
5150nn0cnd 11353 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
5243, 51mulcomd 10061 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · 𝐾) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
5340, 52eqtrd 2656 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
5412, 28, 533eqtrd 2660 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  c0 3915   class class class wbr 4653   × cxp 5112  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cc 9934  0cc0 9936   · cmul 9941  cmin 10266  cn 11020  2c2 11070  3c3 11071  0cn0 11292  0*cxnn0 11363  cuz 11687  #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FinUSGraph cfusgr 26208   NeighbVtx cnbgr 26224   RegUSGraph crusgr 26452   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlk3OLD  27242  numclwwlk3  27243
  Copyright terms: Public domain W3C validator