| Step | Hyp | Ref
| Expression |
| 1 | | ccatws1len 13398 |
. . . . . . . . 9
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (#‘(𝑋 ++ 〈“𝐶”〉)) = ((#‘𝑋) + 1)) |
| 2 | 1 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (#‘(𝑋 ++ 〈“𝐶”〉)) = ((#‘𝑋) + 1)) |
| 3 | 2 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (0..^(#‘(𝑋 ++ 〈“𝐶”〉))) = (0..^((#‘𝑋) + 1))) |
| 4 | | lencl 13324 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Word 𝐵 → (#‘𝑋) ∈
ℕ0) |
| 5 | | elnn0uz 11725 |
. . . . . . . . . . 11
⊢
((#‘𝑋) ∈
ℕ0 ↔ (#‘𝑋) ∈
(ℤ≥‘0)) |
| 6 | 4, 5 | sylib 208 |
. . . . . . . . . 10
⊢ (𝑋 ∈ Word 𝐵 → (#‘𝑋) ∈
(ℤ≥‘0)) |
| 7 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (#‘𝑋) ∈
(ℤ≥‘0)) |
| 8 | | fzosplitsn 12576 |
. . . . . . . . 9
⊢
((#‘𝑋) ∈
(ℤ≥‘0) → (0..^((#‘𝑋) + 1)) = ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})) |
| 9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (0..^((#‘𝑋) + 1)) = ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})) |
| 10 | 9 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (0..^((#‘𝑋) + 1)) = ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})) |
| 11 | 3, 10 | eqtrd 2656 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (0..^(#‘(𝑋 ++ 〈“𝐶”〉))) = ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})) |
| 12 | 11 | raleqdv 3144 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (∀𝑖 ∈ (0..^(#‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛))) |
| 13 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (#‘𝑋) ∈
ℕ0) |
| 14 | 13 | 3ad2ant1 1082 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (#‘𝑋) ∈
ℕ0) |
| 15 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = (#‘𝑋) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = ((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))) |
| 16 | 15 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑖 = (#‘𝑋) → (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛)) |
| 17 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = (#‘𝑋) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = ((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))) |
| 18 | 17 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑖 = (#‘𝑋) → (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛)) |
| 19 | 16, 18 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑖 = (#‘𝑋) → ((((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛))) |
| 20 | 19 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑖 = (#‘𝑋) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛))) |
| 21 | 20 | ralunsn 4422 |
. . . . . 6
⊢
((#‘𝑋) ∈
ℕ0 → (∀𝑖 ∈ ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛)))) |
| 22 | 14, 21 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (∀𝑖 ∈ ((0..^(#‘𝑋)) ∪ {(#‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛)))) |
| 23 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Word 𝐵) |
| 24 | 23 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → 𝑋 ∈ Word 𝐵) |
| 25 | 24 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝑋 ∈ Word 𝐵) |
| 26 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 27 | 26 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → 𝐶 ∈ 𝐵) |
| 28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝐶 ∈ 𝐵) |
| 29 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝑖 ∈ (0..^(#‘𝑋))) |
| 30 | | ccats1val1 13403 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑖 ∈ (0..^(#‘𝑋))) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = (𝑋‘𝑖)) |
| 31 | 25, 28, 29, 30 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = (𝑋‘𝑖)) |
| 32 | 31 | fveq1d 6193 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = ((𝑋‘𝑖)‘𝑛)) |
| 33 | | simpl2l 1114 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝑌 ∈ Word 𝑃) |
| 34 | | simpl2r 1115 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝑅 ∈ 𝑃) |
| 35 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑋) =
(#‘𝑌) →
(0..^(#‘𝑋)) =
(0..^(#‘𝑌))) |
| 36 | 35 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢
((#‘𝑋) =
(#‘𝑌) → (𝑖 ∈ (0..^(#‘𝑋)) ↔ 𝑖 ∈ (0..^(#‘𝑌)))) |
| 37 | 36 | biimpd 219 |
. . . . . . . . . . . . 13
⊢
((#‘𝑋) =
(#‘𝑌) → (𝑖 ∈ (0..^(#‘𝑋)) → 𝑖 ∈ (0..^(#‘𝑌)))) |
| 38 | 37 | 3ad2ant3 1084 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (𝑖 ∈ (0..^(#‘𝑋)) → 𝑖 ∈ (0..^(#‘𝑌)))) |
| 39 | 38 | imp 445 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → 𝑖 ∈ (0..^(#‘𝑌))) |
| 40 | | ccats1val1 13403 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ 𝑖 ∈ (0..^(#‘𝑌))) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = (𝑌‘𝑖)) |
| 41 | 33, 34, 39, 40 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = (𝑌‘𝑖)) |
| 42 | 41 | fveq1d 6193 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛)) |
| 43 | 32, 42 | eqeq12d 2637 |
. . . . . . . 8
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → ((((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
| 44 | 43 | ralbidv 2986 |
. . . . . . 7
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) ∧ 𝑖 ∈ (0..^(#‘𝑋))) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
| 45 | 44 | ralbidva 2985 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
| 46 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (#‘𝑋) = (#‘𝑋)) |
| 47 | 23, 26, 46 | 3jca 1242 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (#‘𝑋) = (#‘𝑋))) |
| 48 | 47 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (#‘𝑋) = (#‘𝑋))) |
| 49 | | ccats1val2 13404 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (#‘𝑋) = (#‘𝑋)) → ((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋)) = 𝐶) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → ((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋)) = 𝐶) |
| 51 | 50 | fveq1d 6193 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (𝐶‘𝑛)) |
| 52 | | df-3an 1039 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (#‘𝑋) = (#‘𝑌)) ↔ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) |
| 53 | 52 | biimpri 218 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (#‘𝑋) = (#‘𝑌))) |
| 54 | 53 | 3adant1 1079 |
. . . . . . . . 9
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (#‘𝑋) = (#‘𝑌))) |
| 55 | | ccats1val2 13404 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (#‘𝑋) = (#‘𝑌)) → ((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋)) = 𝑅) |
| 56 | 55 | fveq1d 6193 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (#‘𝑋) = (#‘𝑌)) → (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛) = (𝑅‘𝑛)) |
| 57 | 54, 56 | syl 17 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛) = (𝑅‘𝑛)) |
| 58 | 51, 57 | eqeq12d 2637 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → ((((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛) ↔ (𝐶‘𝑛) = (𝑅‘𝑛))) |
| 59 | 58 | ralbidv 2986 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛))) |
| 60 | 45, 59 | anbi12d 747 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(#‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(#‘𝑋))‘𝑛)) ↔ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
| 61 | 12, 22, 60 | 3bitrd 294 |
. . . 4
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌)) → (∀𝑖 ∈ (0..^(#‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
| 62 | 61 | ad2antlr 763 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(#‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
| 63 | | pm3.35 611 |
. . . . . . 7
⊢
((∀𝑖 ∈
(0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) |
| 64 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝑆 Σg 𝑋)‘𝑛) = ((𝑆 Σg 𝑋)‘𝑗)) |
| 65 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝑍 Σg 𝑌)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑗)) |
| 66 | 64, 65 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))) |
| 67 | 66 | cbvralv 3171 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
| 68 | | simp-4l 806 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑁 ∈ Fin) |
| 69 | | simp-4r 807 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑀 ∈ Fin) |
| 70 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑛 ∈ 𝐼) |
| 71 | 68, 69, 70 | 3jca 1242 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼)) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼)) |
| 73 | | simp-4r 807 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) |
| 74 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
| 76 | 75 | anim1i 592 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → (∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛))) |
| 77 | | gsmsymgrfix.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (SymGrp‘𝑁) |
| 78 | | gsmsymgrfix.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝑆) |
| 79 | | gsmsymgreq.z |
. . . . . . . . . . . . . . 15
⊢ 𝑍 = (SymGrp‘𝑀) |
| 80 | | gsmsymgreq.p |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (Base‘𝑍) |
| 81 | | gsmsymgreq.i |
. . . . . . . . . . . . . . 15
⊢ 𝐼 = (𝑁 ∩ 𝑀) |
| 82 | 77, 78, 79, 80, 81 | gsmsymgreqlem1 17850 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ((∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
| 83 | 82 | imp 445 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ (∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛))) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)) |
| 84 | 72, 73, 76, 83 | syl21anc 1325 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)) |
| 85 | 84 | ex 450 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → ((𝐶‘𝑛) = (𝑅‘𝑛) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
| 86 | 85 | ralimdva 2962 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
| 87 | 86 | expcom 451 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 88 | 67, 87 | sylbi 207 |
. . . . . . . 8
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 89 | 88 | com23 86 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 90 | 63, 89 | syl 17 |
. . . . . 6
⊢
((∀𝑖 ∈
(0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 91 | 90 | impancom 456 |
. . . . 5
⊢
((∀𝑖 ∈
(0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 92 | 91 | com13 88 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
| 93 | 92 | imp 445 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
| 94 | 62, 93 | sylbid 230 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) ∧ (∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(#‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
| 95 | 94 | ex 450 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (#‘𝑋) = (#‘𝑌))) → ((∀𝑖 ∈ (0..^(#‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(#‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |