MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit2 Structured version   Visualization version   GIF version

Theorem gsumsplit2 18329
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumsplit2.b 𝐵 = (Base‘𝐺)
gsumsplit2.z 0 = (0g𝐺)
gsumsplit2.p + = (+g𝐺)
gsumsplit2.g (𝜑𝐺 ∈ CMnd)
gsumsplit2.a (𝜑𝐴𝑉)
gsumsplit2.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumsplit2.w (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
gsumsplit2.i (𝜑 → (𝐶𝐷) = ∅)
gsumsplit2.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumsplit2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem gsumsplit2
StepHypRef Expression
1 gsumsplit2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit2.z . . 3 0 = (0g𝐺)
3 gsumsplit2.p . . 3 + = (+g𝐺)
4 gsumsplit2.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumsplit2.a . . 3 (𝜑𝐴𝑉)
6 gsumsplit2.f . . . 4 ((𝜑𝑘𝐴) → 𝑋𝐵)
7 eqid 2622 . . . 4 (𝑘𝐴𝑋) = (𝑘𝐴𝑋)
86, 7fmptd 6385 . . 3 (𝜑 → (𝑘𝐴𝑋):𝐴𝐵)
9 gsumsplit2.w . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
10 gsumsplit2.i . . 3 (𝜑 → (𝐶𝐷) = ∅)
11 gsumsplit2.u . . 3 (𝜑𝐴 = (𝐶𝐷))
121, 2, 3, 4, 5, 8, 9, 10, 11gsumsplit 18328 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))))
13 ssun1 3776 . . . . . 6 𝐶 ⊆ (𝐶𝐷)
1413, 11syl5sseqr 3654 . . . . 5 (𝜑𝐶𝐴)
1514resmptd 5452 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐶) = (𝑘𝐶𝑋))
1615oveq2d 6666 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐶𝑋)))
17 ssun2 3777 . . . . . 6 𝐷 ⊆ (𝐶𝐷)
1817, 11syl5sseqr 3654 . . . . 5 (𝜑𝐷𝐴)
1918resmptd 5452 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐷) = (𝑘𝐷𝑋))
2019oveq2d 6666 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐷𝑋)))
2116, 20oveq12d 6668 . 2 (𝜑 → ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
2212, 21eqtrd 2656 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cun 3572  cin 3573  c0 3915   class class class wbr 4653  cmpt 4729  cres 5116  cfv 5888  (class class class)co 6650   finSupp cfsupp 8275  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  gsummptfidmsplit  18330  gsumdifsnd  18360  chfacfscmulgsum  20665  chfacfpmmulgsum  20669  tdeglem4  23820  gsummptres  29784
  Copyright terms: Public domain W3C validator