MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzcl2 Structured version   Visualization version   GIF version

Theorem gsumzcl2 18311
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 18312, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzcl2.w (𝜑 → (𝐹 supp 0 ) ∈ Fin)
Assertion
Ref Expression
gsumzcl2 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumzcl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 gsumzcl.a . . . . . . 7 (𝜑𝐴𝑉)
3 gsumzcl.0 . . . . . . . . 9 0 = (0g𝐺)
4 fvex 6201 . . . . . . . . 9 (0g𝐺) ∈ V
53, 4eqeltri 2697 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑0 ∈ V)
7 ssid 3624 . . . . . . . 8 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
87a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
91, 2, 6, 8gsumcllem 18309 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
109oveq2d 6666 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
11 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
123gsumz 17374 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1311, 2, 12syl2anc 693 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1413adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1510, 14eqtrd 2656 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = 0 )
16 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
1716, 3mndidcl 17308 . . . . . 6 (𝐺 ∈ Mnd → 0𝐵)
1811, 17syl 17 . . . . 5 (𝜑0𝐵)
1918adantr 481 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 0𝐵)
2015, 19eqeltrd 2701 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) ∈ 𝐵)
2120ex 450 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg 𝐹) ∈ 𝐵))
22 eqid 2622 . . . . . . 7 (+g𝐺) = (+g𝐺)
23 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
2411adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
252adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
261adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
27 gsumzcl.c . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2827adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
29 simprl 794 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (#‘(𝐹 supp 0 )) ∈ ℕ)
30 f1of1 6136 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
3130ad2antll 765 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
32 suppssdm 7308 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ dom 𝐹
33 fdm 6051 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
341, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
3532, 34syl5sseq 3653 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3635adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
37 f1ss 6106 . . . . . . . 8 ((𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
3831, 36, 37syl2anc 693 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
39 f1ofo 6144 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
40 forn 6118 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
4139, 40syl 17 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
4241ad2antll 765 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
437, 42syl5sseqr 3654 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
44 eqid 2622 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
4516, 3, 22, 23, 24, 25, 26, 28, 29, 38, 43, 44gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))))
46 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
4729, 46syl6eleq 2711 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (#‘(𝐹 supp 0 )) ∈ (ℤ‘1))
48 f1f 6101 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴)
4938, 48syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴)
50 fco 6058 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴) → (𝐹𝑓):(1...(#‘(𝐹 supp 0 )))⟶𝐵)
5126, 49, 50syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓):(1...(#‘(𝐹 supp 0 )))⟶𝐵)
5251ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ 𝑘 ∈ (1...(#‘(𝐹 supp 0 )))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
5316, 22mndcl 17301 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑘𝐵𝑥𝐵) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
54533expb 1266 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑘𝐵𝑥𝐵)) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
5524, 54sylan 488 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
5647, 52, 55seqcl 12821 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))) ∈ 𝐵)
5745, 56eqeltrd 2701 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) ∈ 𝐵)
5857expr 643 . . . 4 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) ∈ 𝐵))
5958exlimdv 1861 . . 3 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) ∈ 𝐵))
6059expimpd 629 . 2 (𝜑 → (((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg 𝐹) ∈ 𝐵))
61 gsumzcl2.w . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
62 fz1f1o 14441 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
6361, 62syl 17 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
6421, 60, 63mpjaod 396 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  wss 3574  c0 3915  cmpt 4729  dom cdm 5114  ran crn 5115  ccom 5118  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955  1c1 9937  cn 11020  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumzcl  18312  gsumcl2  18315
  Copyright terms: Public domain W3C validator