MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzo Structured version   Visualization version   GIF version

Theorem hashfzo 13216
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzo
StepHypRef Expression
1 eluzel2 11692 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21zcnd 11483 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
32subidd 10380 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴𝐴) = 0)
4 fzo0 12492 . . . . . 6 (𝐴..^𝐴) = ∅
54fveq2i 6194 . . . . 5 (#‘(𝐴..^𝐴)) = (#‘∅)
6 hash0 13158 . . . . 5 (#‘∅) = 0
75, 6eqtri 2644 . . . 4 (#‘(𝐴..^𝐴)) = 0
83, 7syl6reqr 2675 . . 3 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐴)) = (𝐴𝐴))
9 oveq2 6658 . . . . 5 (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴))
109fveq2d 6195 . . . 4 (𝐵 = 𝐴 → (#‘(𝐴..^𝐵)) = (#‘(𝐴..^𝐴)))
11 oveq1 6657 . . . 4 (𝐵 = 𝐴 → (𝐵𝐴) = (𝐴𝐴))
1210, 11eqeq12d 2637 . . 3 (𝐵 = 𝐴 → ((#‘(𝐴..^𝐵)) = (𝐵𝐴) ↔ (#‘(𝐴..^𝐴)) = (𝐴𝐴)))
138, 12syl5ibrcom 237 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 → (#‘(𝐴..^𝐵)) = (𝐵𝐴)))
14 eluzelz 11697 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
15 fzoval 12471 . . . . . . 7 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1614, 15syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1716fveq2d 6195 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (#‘(𝐴...(𝐵 − 1))))
1817adantr 481 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴..^𝐵)) = (#‘(𝐴...(𝐵 − 1))))
19 hashfz 13214 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (#‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1))
2014zcnd 11483 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
21 1cnd 10056 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
2220, 21, 2sub32d 10424 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵𝐴) − 1))
2322oveq1d 6665 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵𝐴) − 1) + 1))
2420, 2subcld 10392 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
25 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
26 npcan 10290 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2724, 25, 26sylancl 694 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2823, 27eqtrd 2656 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵𝐴))
2919, 28sylan9eqr 2678 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴...(𝐵 − 1))) = (𝐵𝐴))
3018, 29eqtrd 2656 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))
3130ex 450 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴)))
32 uzm1 11718 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ𝐴)))
3313, 31, 32mpjaod 396 1 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  c0 3915  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118
This theorem is referenced by:  hashfzo0  13217  pntlemr  25291  circlemethhgt  30721
  Copyright terms: Public domain W3C validator