![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfz | Structured version Visualization version GIF version |
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
Ref | Expression |
---|---|
hashfz | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (#‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 11692 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
2 | eluzelz 11697 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
3 | 1z 11407 | . . . . . 6 ⊢ 1 ∈ ℤ | |
4 | zsubcl 11419 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 695 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 − 𝐴) ∈ ℤ) |
6 | fzen 12358 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) | |
7 | 1, 2, 5, 6 | syl3anc 1326 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) |
8 | 1 | zcnd 11483 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
9 | ax-1cn 9994 | . . . . . 6 ⊢ 1 ∈ ℂ | |
10 | pncan3 10289 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1) | |
11 | 8, 9, 10 | sylancl 694 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 + (1 − 𝐴)) = 1) |
12 | 2 | zcnd 11483 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
13 | 1cnd 10056 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
14 | 12, 13, 8 | addsub12d 10415 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵 − 𝐴))) |
15 | 12, 8 | subcld 10392 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
16 | addcom 10222 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (1 + (𝐵 − 𝐴)) = ((𝐵 − 𝐴) + 1)) | |
17 | 9, 15, 16 | sylancr 695 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 + (𝐵 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
18 | 14, 17 | eqtrd 2656 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
19 | 11, 18 | oveq12d 6668 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵 − 𝐴) + 1))) |
20 | 7, 19 | breqtrd 4679 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1))) |
21 | hasheni 13136 | . . 3 ⊢ ((𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)) → (#‘(𝐴...𝐵)) = (#‘(1...((𝐵 − 𝐴) + 1)))) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (#‘(𝐴...𝐵)) = (#‘(1...((𝐵 − 𝐴) + 1)))) |
23 | uznn0sub 11719 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℕ0) | |
24 | peano2nn0 11333 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℕ0 → ((𝐵 − 𝐴) + 1) ∈ ℕ0) | |
25 | hashfz1 13134 | . . 3 ⊢ (((𝐵 − 𝐴) + 1) ∈ ℕ0 → (#‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) | |
26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (#‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) |
27 | 22, 26 | eqtrd 2656 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (#‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ≈ cen 7952 ℂcc 9934 1c1 9937 + caddc 9939 − cmin 10266 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 ...cfz 12326 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: fzsdom2 13215 hashfzo 13216 hashfzp1 13218 hashfz0 13219 0sgmppw 24923 logfaclbnd 24947 gausslemma2dlem5 25096 ballotlem2 30550 subfacp1lem5 31166 fzisoeu 39514 stoweidlem11 40228 stoweidlem26 40243 |
Copyright terms: Public domain | W3C validator |