Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eulemOLDN Structured version   Visualization version   GIF version

Theorem hdmap1eulemOLDN 37114
Description: Lemma for hdmap1euOLDN 37116. TODO: combine with hdmap1euOLDN 37116 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1eulem.h 𝐻 = (LHyp‘𝐾)
hdmap1eulem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eulem.v 𝑉 = (Base‘𝑈)
hdmap1eulem.s = (-g𝑈)
hdmap1eulem.o 0 = (0g𝑈)
hdmap1eulem.n 𝑁 = (LSpan‘𝑈)
hdmap1eulem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eulem.d 𝐷 = (Base‘𝐶)
hdmap1eulem.r 𝑅 = (-g𝐶)
hdmap1eulem.q 𝑄 = (0g𝐶)
hdmap1eulem.j 𝐽 = (LSpan‘𝐶)
hdmap1eulem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eulem.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eulem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eulem.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
hdmap1eulem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eulem.f (𝜑𝐹𝐷)
hdmap1eulem.y (𝜑𝑇𝑉)
hdmap1eulem.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1eulemOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝐶,   𝑥,,𝑦,𝑧,𝐷   ,𝐹,𝑥,𝑦,𝑧   ,𝐽,𝑥   ,𝐿,𝑥,𝑦,𝑧   ,𝑀,𝑥   ,𝑁,𝑥,𝑦,𝑧   0 ,,𝑥,𝑦,𝑧   𝑥,𝑄   𝑅,,𝑥   ,,𝑥   𝑇,,𝑥,𝑦,𝑧   𝑈,,𝑧   ,𝑉,𝑦,𝑧   ,𝑋,𝑥,𝑦,𝑧   𝜑,,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐼(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem hdmap1eulemOLDN
StepHypRef Expression
1 hdmap1eulem.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1eulem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eulem.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1eulem.s . . 3 = (-g𝑈)
5 hdmap1eulem.o . . 3 0 = (0g𝑈)
6 hdmap1eulem.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1eulem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eulem.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1eulem.r . . 3 𝑅 = (-g𝐶)
10 hdmap1eulem.q . . 3 𝑄 = (0g𝐶)
11 hdmap1eulem.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1eulem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eulem.l . . 3 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 hdmap1eulem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eulem.f . . 3 (𝜑𝐹𝐷)
16 hdmap1eulem.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 hdmap1eulem.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 hdmap1eulem.y . . 3 (𝜑𝑇𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18mapdh9aOLDN 37080 . 2 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
20 hdmap1eulem.i . . . . . . . . . 10 𝐼 = ((HDMap1‘𝐾)‘𝑊)
2114ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2217ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2315ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
24 simplr 792 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13hdmap1valc 37093 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑧⟩))
2625oteq2d 4415 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
2726fveq2d 6195 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
28 eqid 2622 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
291, 2, 14dvhlmod 36399 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
3029ad2antrr 762 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
3117eldifad 3586 . . . . . . . . . . 11 (𝜑𝑋𝑉)
323, 28, 6, 29, 31, 18lspprcl 18978 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
3332ad2antrr 762 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
34 simpr 477 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
353, 5, 28, 30, 33, 24, 34lssneln0 18952 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
3616ad2antrr 762 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
371, 2, 14dvhlvec 36398 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
3837ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
3931ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
4018ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
413, 6, 38, 24, 39, 40, 34lspindpi 19132 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4241simpld 475 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4342necomd 2849 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
4410, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 21, 23, 36, 22, 24, 43mapdhcl 37016 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐿‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
451, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 35, 44, 40, 13hdmap1valc 37093 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4627, 45eqtrd 2656 . . . . . 6 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4746eqeq2d 2632 . . . . 5 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ↔ 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
4847pm5.74da 723 . . . 4 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
4948ralbidva 2985 . . 3 (𝜑 → (∀𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∀𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5049reubidv 3126 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5119, 50mpbird 247 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  ∃!wreu 2914  Vcvv 3200  cdif 3571  ifcif 4086  {csn 4177  {cpr 4179  cotp 4185  cmpt 4729  cfv 5888  crio 6610  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  0gc0g 16100  -gcsg 17424  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914  df-hdmap1 37083
This theorem is referenced by:  hdmap1euOLDN  37116
  Copyright terms: Public domain W3C validator