MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgerlem Structured version   Visualization version   GIF version

Theorem hpgerlem 25657
Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgid.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
hpgerlem (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Distinct variable groups:   𝐴,𝑐,𝑡   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡   𝜑,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑐)

Proof of Theorem hpgerlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
2 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
41, 2, 3tglnne0 25535 . . 3 (𝜑𝐷 ≠ ∅)
5 n0 3931 . . 3 (𝐷 ≠ ∅ ↔ ∃𝑥 𝑥𝐷)
64, 5sylib 208 . 2 (𝜑 → ∃𝑥 𝑥𝐷)
7 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
8 eqid 2622 . . . 4 (dist‘𝐺) = (dist‘𝐺)
9 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
102adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ TarskiG)
11 hpgid.a . . . . 5 (𝜑𝐴𝑃)
1211adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝐴𝑃)
133adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝐷 ∈ ran 𝐿)
14 simpr 477 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
157, 1, 9, 10, 13, 14tglnpt 25444 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑃)
163adantr 481 . . . . . . 7 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐷 ∈ ran 𝐿)
172adantr 481 . . . . . . . 8 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐺 ∈ TarskiG)
18 simpr 477 . . . . . . . 8 ((𝜑 ∧ (#‘𝑃) = 1) → (#‘𝑃) = 1)
197, 9, 1, 17, 18tglndim0 25524 . . . . . . 7 ((𝜑 ∧ (#‘𝑃) = 1) → ¬ 𝐷 ∈ ran 𝐿)
2016, 19pm2.65da 600 . . . . . 6 (𝜑 → ¬ (#‘𝑃) = 1)
217, 11tgldimor 25397 . . . . . . 7 (𝜑 → ((#‘𝑃) = 1 ∨ 2 ≤ (#‘𝑃)))
2221ord 392 . . . . . 6 (𝜑 → (¬ (#‘𝑃) = 1 → 2 ≤ (#‘𝑃)))
2320, 22mpd 15 . . . . 5 (𝜑 → 2 ≤ (#‘𝑃))
2423adantr 481 . . . 4 ((𝜑𝑥𝐷) → 2 ≤ (#‘𝑃))
257, 8, 9, 10, 12, 15, 24tgbtwndiff 25401 . . 3 ((𝜑𝑥𝐷) → ∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐))
26 hpgid.1 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝐷)
2726ad4antr 768 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝐴𝐷)
2810ad4antr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐺 ∈ TarskiG)
2915ad4antr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑃)
30 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝑐𝑃)
3130ad3antrrr 766 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝑃)
3212adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝐴𝑃)
3332ad3antrrr 766 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝑃)
34 simplr 792 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑐)
35 simplr 792 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥 ∈ (𝐴𝐼𝑐))
3635adantr 481 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥 ∈ (𝐴𝐼𝑐))
377, 9, 1, 28, 29, 31, 33, 34, 36btwnlng2 25515 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴 ∈ (𝑥𝐿𝑐))
3813ad4antr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 ∈ ran 𝐿)
3914ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥𝐷)
4039adantr 481 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝐷)
41 simpr 477 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝐷)
427, 9, 1, 28, 29, 31, 34, 34, 38, 40, 41tglinethru 25531 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 = (𝑥𝐿𝑐))
4337, 42eleqtrrd 2704 . . . . . . . . 9 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝐷)
4427, 43mtand 691 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝑐𝐷)
45 eleq1 2689 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑐) ↔ 𝑥 ∈ (𝐴𝐼𝑐)))
4645rspcev 3309 . . . . . . . . 9 ((𝑥𝐷𝑥 ∈ (𝐴𝐼𝑐)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4739, 35, 46syl2anc 693 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4827, 44, 47jca31 557 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
4948anasss 679 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
50 hpgid.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
517, 8, 9, 50, 32, 30islnopp 25631 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5251adantr 481 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5349, 52mpbird 247 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → 𝐴𝑂𝑐)
5453ex 450 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → ((𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → 𝐴𝑂𝑐))
5554reximdva 3017 . . 3 ((𝜑𝑥𝐷) → (∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → ∃𝑐𝑃 𝐴𝑂𝑐))
5625, 55mpd 15 . 2 ((𝜑𝑥𝐷) → ∃𝑐𝑃 𝐴𝑂𝑐)
576, 56exlimddv 1863 1 (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  cdif 3571  c0 3915   class class class wbr 4653  {copab 4712  ran crn 5115  cfv 5888  (class class class)co 6650  1c1 9937  cle 10075  2c2 11070  #chash 13117  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  hpgid  25658  lnperpex  25695
  Copyright terms: Public domain W3C validator