MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   Unicode version

Theorem hypcgrlem1 25691
Description: Lemma for hypcgr 25693, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p  |-  P  =  ( Base `  G
)
hypcgr.m  |-  .-  =  ( dist `  G )
hypcgr.i  |-  I  =  (Itv `  G )
hypcgr.g  |-  ( ph  ->  G  e. TarskiG )
hypcgr.h  |-  ( ph  ->  GDimTarskiG 2 )
hypcgr.a  |-  ( ph  ->  A  e.  P )
hypcgr.b  |-  ( ph  ->  B  e.  P )
hypcgr.c  |-  ( ph  ->  C  e.  P )
hypcgr.d  |-  ( ph  ->  D  e.  P )
hypcgr.e  |-  ( ph  ->  E  e.  P )
hypcgr.f  |-  ( ph  ->  F  e.  P )
hypcgr.1  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
hypcgr.2  |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )
hypcgr.3  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
hypcgr.4  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
hypcgrlem2.b  |-  ( ph  ->  B  =  E )
hypcgrlem1.s  |-  S  =  ( (lInvG `  G
) `  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
hypcgrlem1.a  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
hypcgrlem1  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3  |-  P  =  ( Base `  G
)
2 hypcgr.m . . 3  |-  .-  =  ( dist `  G )
3 hypcgr.i . . 3  |-  I  =  (Itv `  G )
4 hypcgr.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  G  e. TarskiG )
6 hypcgr.c . . . 4  |-  ( ph  ->  C  e.  P )
76adantr 481 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  C  e.  P )
8 hypcgr.a . . . 4  |-  ( ph  ->  A  e.  P )
98adantr 481 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  A  e.  P )
10 hypcgr.f . . . 4  |-  ( ph  ->  F  e.  P )
1110adantr 481 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  F  e.  P )
12 hypcgr.d . . . 4  |-  ( ph  ->  D  e.  P )
1312adantr 481 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  D  e.  P )
14 eqid 2622 . . . . . . 7  |-  (LineG `  G )  =  (LineG `  G )
15 eqid 2622 . . . . . . 7  |-  (pInvG `  G )  =  (pInvG `  G )
16 hypcgr.b . . . . . . 7  |-  ( ph  ->  B  e.  P )
17 hypcgr.1 . . . . . . 7  |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 25593 . . . . . 6  |-  ( ph  ->  <" C B A ">  e.  (∟G `  G ) )
191, 2, 3, 14, 15, 4, 6, 16, 8israg 25592 . . . . . 6  |-  ( ph  ->  ( <" C B A ">  e.  (∟G `  G )  <->  ( C  .-  A )  =  ( C  .-  ( ( (pInvG `  G ) `  B ) `  A
) ) ) )
2018, 19mpbid 222 . . . . 5  |-  ( ph  ->  ( C  .-  A
)  =  ( C 
.-  ( ( (pInvG `  G ) `  B
) `  A )
) )
2120adantr 481 . . . 4  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  ( C  .-  A )  =  ( C  .-  ( ( (pInvG `  G ) `  B ) `  A
) ) )
22 hypcgrlem1.a . . . . . . 7  |-  ( ph  ->  C  =  F )
2322eqcomd 2628 . . . . . 6  |-  ( ph  ->  F  =  C )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  F  =  C )
25 hypcgr.h . . . . . . 7  |-  ( ph  ->  GDimTarskiG 2 )
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 25670 . . . . . 6  |-  ( ph  ->  ( D  =  ( ( (pInvG `  G
) `  B ) `  A )  <->  ( A
(midG `  G ) D )  =  B ) )
2726biimpar 502 . . . . 5  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  D  =  ( ( (pInvG `  G ) `  B
) `  A )
)
2824, 27oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  ( F  .-  D )  =  ( C  .-  ( ( (pInvG `  G ) `  B ) `  A
) ) )
2921, 28eqtr4d 2659 . . 3  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  ( C  .-  A )  =  ( F  .-  D ) )
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 25375 . 2  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =  B )  ->  ( A  .-  C )  =  ( D  .-  F ) )
31 simpr 477 . . . 4  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  D )  ->  A  =  D )
3222ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  D )  ->  C  =  F )
3331, 32oveq12d 6668 . . 3  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  D )  ->  ( A  .-  C )  =  ( D  .-  F
) )
3417ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" A B C ">  e.  (∟G `  G ) )
354ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  G  e. TarskiG )
368ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  A  e.  P )
3716ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  B  e.  P )
386ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  C  e.  P )
391, 2, 3, 14, 15, 35, 36, 37, 38israg 25592 . . . . . 6  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( <" A B C ">  e.  (∟G `  G
)  <->  ( A  .-  C )  =  ( A  .-  ( ( (pInvG `  G ) `  B ) `  C
) ) ) )
4034, 39mpbid 222 . . . . 5  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  C )  =  ( A  .-  ( ( (pInvG `  G ) `  B ) `  C
) ) )
4125ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  GDimTarskiG 2 )
42 hypcgrlem1.s . . . . . . 7  |-  S  =  ( (lInvG `  G
) `  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
4312ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  D  e.  P )
441, 2, 3, 35, 41, 36, 43midcl 25669 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  P
)
45 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  =/=  B
)
461, 3, 14, 35, 44, 37, 45tgelrnln 25525 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( ( A (midG `  G ) D ) (LineG `  G ) B )  e.  ran  (LineG `  G ) )
47 eqid 2622 . . . . . . 7  |-  ( (pInvG `  G ) `  B
)  =  ( (pInvG `  G ) `  B
)
48 eqid 2622 . . . . . . . . 9  |-  (cgrG `  G )  =  (cgrG `  G )
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 25556 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( (
(pInvG `  G ) `  B ) `  C
)  e.  P )
50 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  A  =/=  D )
511, 2, 3, 35, 41, 36, 43midbtwn 25671 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  ( A I D ) )
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 25452 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D  e.  ( A (LineG `  G ) ( A (midG `  G ) D ) )  \/  A  =  ( A (midG `  G ) D ) ) )
53 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ph  ->  D  =  D )
54 hypcgrlem2.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  E )
5553, 54, 22s3eqd 13609 . . . . . . . . . . . 12  |-  ( ph  ->  <" D B C ">  =  <" D E F "> )
5655ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" D B C ">  =  <" D E F "> )
57 hypcgr.2 . . . . . . . . . . . 12  |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )
5857ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" D E F ">  e.  (∟G `  G ) )
5956, 58eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" D B C ">  e.  (∟G `  G ) )
601, 2, 3, 14, 15, 35, 43, 37, 38israg 25592 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( <" D B C ">  e.  (∟G `  G
)  <->  ( D  .-  C )  =  ( D  .-  ( ( (pInvG `  G ) `  B ) `  C
) ) ) )
6159, 60mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D  .-  C )  =  ( D  .-  ( ( (pInvG `  G ) `  B ) `  C
) ) )
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 25464 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( ( A (midG `  G ) D )  .-  C
)  =  ( ( A (midG `  G
) D )  .-  ( ( (pInvG `  G ) `  B
) `  C )
) )
631, 2, 3, 14, 15, 35, 44, 37, 38israg 25592 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( <" ( A (midG `  G ) D ) B C ">  e.  (∟G `  G )  <->  ( ( A (midG `  G ) D ) 
.-  C )  =  ( ( A (midG `  G ) D ) 
.-  ( ( (pInvG `  G ) `  B
) `  C )
) ) )
6462, 63mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" ( A (midG `  G ) D ) B C ">  e.  (∟G `  G ) )
651, 3, 14, 35, 44, 37, 45tglinerflx1 25528 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
661, 3, 14, 35, 44, 37, 45tglinerflx2 25529 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  B  e.  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 25686 . . . . . 6  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( S `  C )  =  ( ( (pInvG `  G
) `  B ) `  C ) )
6867oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  ( S `  C
) )  =  ( A  .-  ( ( (pInvG `  G ) `  B ) `  C
) ) )
6940, 68eqtr4d 2659 . . . 4  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  C )  =  ( A  .-  ( S `
 C ) ) )
701, 2, 3, 35, 41, 43, 36midcom 25674 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D
(midG `  G ) A )  =  ( A (midG `  G
) D ) )
7170, 65eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D
(midG `  G ) A )  e.  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )
7250necomd 2849 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  D  =/=  A )
731, 3, 14, 35, 43, 36, 72tgelrnln 25525 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D
(LineG `  G ) A )  e.  ran  (LineG `  G ) )
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 25383 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  ( D I A ) )
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 25514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  ( D (LineG `  G
) A ) )
7665, 75elind 3798 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  e.  ( ( ( A (midG `  G ) D ) (LineG `  G ) B )  i^i  ( D (LineG `  G ) A ) ) )
771, 3, 14, 35, 43, 36, 72tglinerflx2 25529 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  A  e.  ( D (LineG `  G
) A ) )
7845necomd 2849 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  B  =/=  ( A (midG `  G
) D ) )
794ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  G  e. TarskiG )
808ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  A  e.  P
)
8112ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  D  e.  P
)
8225ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  GDimTarskiG 2 )
83 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  A  =  ( A (midG `  G
) D ) )
8483eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  ( A (midG `  G ) D )  =  A )
851, 2, 3, 79, 82, 80, 81, 84midcgr 25672 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  ( A  .-  A )  =  ( A  .-  D ) )
8685eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  ( A  .-  D )  =  ( A  .-  A ) )
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 25362 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =  ( A (midG `  G
) D ) )  ->  A  =  D )
8887ex 450 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =/=  B
)  ->  ( A  =  ( A (midG `  G ) D )  ->  A  =  D ) )
8988necon3d 2815 . . . . . . . . . 10  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =/=  B
)  ->  ( A  =/=  D  ->  A  =/=  ( A (midG `  G
) D ) ) )
9089imp 445 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  A  =/=  ( A (midG `  G
) D ) )
91 hypcgr.e . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  P )
92 hypcgr.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 25375 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  .-  A
)  =  ( E 
.-  D ) )
9454oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  .-  D
)  =  ( E 
.-  D ) )
9593, 94eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  .-  A
)  =  ( B 
.-  D ) )
9695ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( B  .-  A )  =  ( B  .-  D ) )
97 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A
(midG `  G ) D )  =  ( A (midG `  G
) D ) )
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 25670 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) D ) ) `  A )  <->  ( A
(midG `  G ) D )  =  ( A (midG `  G
) D ) ) )
9997, 98mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  D  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) D ) ) `  A ) )
10099oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( B  .-  D )  =  ( B  .-  ( ( (pInvG `  G ) `  ( A (midG `  G ) D ) ) `  A ) ) )
10196, 100eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( B  .-  A )  =  ( B  .-  ( ( (pInvG `  G ) `  ( A (midG `  G ) D ) ) `  A ) ) )
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 25592 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( <" B ( A (midG `  G ) D ) A ">  e.  (∟G `  G )  <->  ( B  .-  A )  =  ( B  .-  ( ( (pInvG `  G ) `  ( A (midG `  G ) D ) ) `  A ) ) ) )
103101, 102mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  <" B
( A (midG `  G ) D ) A ">  e.  (∟G `  G ) )
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 25612 . . . . . . . 8  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( ( A (midG `  G ) D ) (LineG `  G ) B ) (⟂G `  G )
( D (LineG `  G ) A ) )
105104orcd 407 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( (
( A (midG `  G ) D ) (LineG `  G ) B ) (⟂G `  G
) ( D (LineG `  G ) A )  \/  D  =  A ) )
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 25679 . . . . . . 7  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  =  ( S `  D )  <->  ( ( D (midG `  G ) A )  e.  ( ( A (midG `  G ) D ) (LineG `  G ) B )  /\  (
( ( A (midG `  G ) D ) (LineG `  G ) B ) (⟂G `  G
) ( D (LineG `  G ) A )  \/  D  =  A ) ) ) )
10771, 105, 106mpbir2and 957 . . . . . 6  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  A  =  ( S `  D ) )
108107oveq1d 6665 . . . . 5  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  ( S `  C
) )  =  ( ( S `  D
)  .-  ( S `  C ) ) )
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 25689 . . . . 5  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( ( S `  D )  .-  ( S `  C
) )  =  ( D  .-  C ) )
11022oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( D  .-  C
)  =  ( D 
.-  F ) )
111110ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( D  .-  C )  =  ( D  .-  F ) )
112108, 109, 1113eqtrd 2660 . . . 4  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  ( S `  C
) )  =  ( D  .-  F ) )
11369, 112eqtrd 2656 . . 3  |-  ( ( ( ph  /\  ( A (midG `  G ) D )  =/=  B
)  /\  A  =/=  D )  ->  ( A  .-  C )  =  ( D  .-  F ) )
11433, 113pm2.61dane 2881 . 2  |-  ( (
ph  /\  ( A
(midG `  G ) D )  =/=  B
)  ->  ( A  .-  C )  =  ( D  .-  F ) )
11530, 114pm2.61dane 2881 1  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   2c2 11070   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590  midGcmid 25664  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  hypcgrlem2  25692
  Copyright terms: Public domain W3C validator